Catalytic NH₃ Combustion Properties of CuO_x/3Al₂O₃·2SiO₂

Satoshi Hinokuma,* Saaya Kiritoshi, Yusuke Kawabata, Kento Araki, Masato Machida

Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan *Corresponding author: hinokuma@kumamoto-u.ac.jp

Abstract: Although NH₃ has recently been regarded as a renewable and carbon-free energy source, NH₃ fuel has problems of high ignition temperature and the production of N₂O/NO_x. To overcome these problems, the present study demonstrates that the NH₃ combustion activity of copper oxide (CuO_x) catalysts supported on $3Al_2O_3 \cdot 2SiO_2$ (3A2S) was found to be superior to CuO_x/Al₂O₃ and CuO_x/SiO₂. The high activity for CuO_x/3A2S was closely associated with the high reducibility and small particle size of CuO_x. Finally, the relation between the local structure of CuO_x/3A2S and its catalytic NH₃ combustion properties was discussed. **Keywords:** Ammonia, Catalytic combustion, Copper oxides.

1. Introduction

Recently, NH₃ has been regarded as a renewable and carbon-free energy source due to its high energy density. However, in comparison with fossil fuels, NH₃ fuel has issues including high ignition temperature and N₂O/NO_x production. Previously, we proposed novel catalytic NH₃ combustion systems that enable low ignition temperatures as well as negligible N₂O/NO_x emissions¹, and demonstrated that CuO_x/Al₂O₃ and CuO_x/SiO₂ show high activity and high N₂ selectivity for catalytic NH₃ combustion, respectively. In this study, therefore, we focused on CuO_x catalysts supported on composite oxides of Al₂O₃ and SiO₂ (3Al₂O₃·2SiO₂: 3A2S) to investigate catalytic properties for the combustion of NH₃ as an energy source.

2. Experimental

3A2S as a catalyst support material was prepared using an alkoxide method, and finally calcined at 1200 °C for 5h. Al₂O₃ (JRC-ALO-8) and SiO₂ (JRC-SIO-10) were also used as support materials for CuO_x catalysts. Supported CuO_x (6 wt% loading as CuO) was prepared by an impregnation of an aqueous solution of Cu(NO₃)₂, followed by drying and calcination at 600 °C for 3 h in air. To evaluate the thermal stability, as-prepared catalysts were thermally aged at 900 °C for 100 h in air. The catalysts were characterized by XRD, *operando* XAFS, H₂-TPR, and so on. Catalytic NH₃ combustion was conducted in a flow reactor at atmospheric pressure (10 °C·min⁻¹, 1.0% NH₃, 1.5% O₂, He balance, and W/F = 5.0×10^{-4} g·min·cm⁻³). The O₂-excess ratio on NH₃ combustion was expressed as $\lambda = (pO_2/pNH_3)_{exp}/(pO_2/pNH_3)_{stoichiom}$. The gas concentrations were analyzed using NDIR and gas chromatography.

3. Results and discussion

XRD patterns for CuO_x/3A2S, CuO_x/SiO₂, and CuO_x/SiO₂(aged) could be assigned to CuO and each support, whereas the diffraction peaks of Cu species for CuO_x/3A2S(aged) and CuO_x/Al₂O₃(aged) could be assigned to CuAl₂O₄. Therefore, the solid-state reaction between CuO_x and Al₂O₃ species was considered to be induced by the thermal aging at 900 °C to form CuAl₂O₄. By contrast, Al₂O₃ phase for CuO_x/Al₂O₃(aged) was partly transformed from γ to α by thermal aging. These structural results are summarized in Table 1.

Figure 1 shows Cu K-edge (a) XANES spectra and (b) FT-EXAFS for CuO_x/3A2S(aged) and CuO_x/SiO₂(aged) during NH₃ combustion ($\lambda = 2$) together with those for references. XANES spectra for CuO_x/3A2S(aged) and CuO_x/SiO₂(aged) at RT were similar to those for CuAl₂O₄ and CuO, respectively, which is consistent with the XRD patterns. However, the absorption energy of the XANES spectra for CuO_x/3A2S(aged) shifted slightly to lower energy on increasing the combustion temperature to 400 and 600 °C (see inset in Figure 1a). By contrast, the absorption energy of the spectrum for CuO_x/SiO₂(aged) at 600 °C exhibited a weak pre-edge assigned to the Cu⁺ 1s \rightarrow 4p transition, which was observed in the

spectrum for Cu₂O. For FT-EXAFS (Figure. 1b), $CuO_x/3A2S(aged)$ displayed an intense Cu–O peak (r ~ 1.94 Å) attributed to $CuAl_2O_4$, r of which was preserved after heating at 600 °C. These results indicate that CuOx/3A2S(aged) also form CuAl2O4 during the NH3 combustion. By contrast, CuO_x/SiO₂(aged) displayed an intense Cu–O peak ($r \sim 1.85$ Å) attributed to Cu₂O on reaching the reaction temperature of 400 °C. These results are consistent with XANES and suggest that the structure of CuO in CuO_x/SiO₂(aged) was partly changed (reduced) to that of Cu₂O during the NH₃ combustion reaction. For CuO_x/Al₂O₃ before and after aging, the operando XAFS profiles were similar to those for CuO_x/3A2S(aged) (not shown here).

Table 1 summarizes the catalytic properties of supported CuO_x before and after thermal aging. T_{10} increased in the following order: $CuO_x/3A2S < CuO_x/Al_2O_3(aged) <$ CuO_x/Al_2O_3 $< CuO_x/3A2S(aged)$ $< CuO_x/SiO_2$ $CuO_x/SiO_2(aged)$. This finding is almost consistent with the order of the reduction temperatures observed in the H₂-TPR experiments, suggesting that the reduction of CuO_x is closely associated with the combustion activity. In addition, it is considered that the lattice oxygen of the CuO_x surface acts as a reactant for adsorbed NH₃, and catalytic NH₃ combustion over supported CuO_x proceeds via the Mars-van Krevelen mechanism. The supported CuO_x with smaller particle sizes

tended to exhibit lower reduction Table 1 Catalytic properties of supported CuO_x before and after thermal aging. temperatures. N₂ selectivity at T_{90} decreased in the following order: CuO_x/SiO_2 $CuO_x/3A2S$ \approx $CuO_x/3A2S(aged)$ > $CuO_x/SiO_2(aged) > CuO_x/Al_2O_3 >$ CuO_x/Al₂O₃(aged). Therefore, it is suggested that CuO_x/3A2S before and after thermal aging exhibited improved the performance for catalytic NH₃ combustion than CuO_x/Al₂O₃ and CuO_x/SiO₂.

Figure 1. Cu K-edge (a) normalized XANES spectra and (b) k^3 -weighted FT-EXAFS of CuO_x/3A2S(aged), CuO_x/SiO₂(aged), and these catalysts during NH₃ combustion at reaction temperatures of 200, 400, and 600 °C for 30 min.

Catalyst	Phase	T_{10}	T ₉₀	Selectivity			Reduction	Cu
				at T_{90} ^{<i>a</i>} / %			temperature	particle
		$^{a}/^{\circ}\mathrm{C}$	$a / \circ C$	N_2	N_2O	NO	^b /°C	size c / nm
CuO _x /3A2S	CuO/3A2S	292	484	97	<1	3	209	3.1
CuO _x /3A2S(aged)	CuAl ₂ O ₄ /3A2S	326	570	94	3	3	234	43
CuO _x /Al ₂ O ₃	$CuAl_2O_4/\gamma\text{-}Al_2O_3$	303	476	92	6	2	185	2.4
CuO _x /Al ₂ O ₃ (aged)	$CuAl_2O_4/\alpha,\gamma\text{-}Al_2O_3$	295	450	91	8	1	155	1.8
CuO _x /SiO ₂	CuO/SiO ₂	334	490	97	1	2	220	9.4
CuO _x /SiO ₂ (aged)	CuO/SiO ₂	335	557	93	4	3	234	17

^a Temperature at which NH₃ conversion reached 10% and 90%. ^b Temperature of the first H₂ consumption peak determined by H₂-TPR. ^c Calculated from H₂-TPR after H₂ reduction and subsequent N2O reoxidation.

This research was supported by JST, PRESTO (JPMJPR1344).

4. Conclusions

During the NH₃ combustion reaction, the local structure of CuAl₂O₄ nanoparticles in CuOx/3A2S(aged) was preserved, whereas that of CuO nanoparticles in CuOx/SiO2(aged) was partly changed to that of Cu₂O. The catalytic NH₃ combustion activity of supported CuO_x was closely associated with the reducibility and particle size of CuO_x, which implies that NH₃ adsorbed on CuO_x reacts primarily with the lattice oxygen. Thus, catalytic NH₃ combustion proceeds via the Mars-van Krevelen mechanism.

References

1. S. Hinokuma et al. Chem. Lett. 45 (2016) 179; J. Phys. Chem. C, 120 (2016) 24734; J. Phys. Chem. C, 121 (2017) 4188; J. Ceram. Soc. Japan 125 (2017) 770; Catal. Today in press, Catal. Commun., in press.