Catalytic mechanism of Cu-based catalyst in methanol dehydrogenation

Weibin Fan^{a,*}

^aState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China *Corresponding authors Fax number 0351 4050320. E mail: famult@svice.ge.org

*Corresponding author: Fax number: 0351-4050320, E-mail: fanwb@sxicc.ac.cn

Abstract: It remains an open question for Cu-based catalysts to understand comprehensively the catalytic roles of Cu⁰ and Cu⁺ due to the high mobility of Cu. Herein, an unprecedentedly stable Cu-based catalyst was fabricated by uniformly embedding Cu nanoparticles in mesoporous silica shell for clarifying the catalytic roles of Cu⁰ and Cu⁺ with dehydrogenation of methanol to methyl formate. It is shown that Cu⁰ catalyzes the cleavage of O–H bond in CH₃OH to CH₃O and C–H bond in CH₃O to HCHO that reacts with another CH₃O species to form HCOOCH₃, while Cu⁺ converts the HCHO into CO and H₂. **Keywords:** Cu-based core-shell catalyst, methanol dehydrogenation, reaction mechanism.

1. Introduction

Cu-based catalysts have been widely used in large numbers of industrially important reactions, including synthesis of alcohols from syngas, steam reforming of methanol, oxidation of CO, water-gas shift reaction, hydrogenation of carbonyl compounds and dehydrogenation of alcohols.¹ However, the identification of active copper species, and further illustration of catalytic mechanism of Cu-based catalysts is still a challenge because of the mobility and evolution of Cu^{0} and Cu^{+} species in the reaction.^{2,3}

Dehydrogenation of methanol (DOM) to methyl formate (MeF) could be considered as a prototype C1 chemical reaction as it generates CH_3O and HCHO intermediates and CO_x byproducts.⁴ A clear understanding of the catalytic roles of Cu^0 and Cu^+ in this reaction would be highly useful for unraveling the catalytic mechanism of Cu-based catalysts in C1 chemical reactions. In this work, we develop a method to prepare a Cu-based core-shell catalyst (Cu@mSiO₂) that shows high catalytic stability in the DOM into MeF. In particular, the catalytic roles of Cu^0 and Cu^+ species are clarified with such a catalyst.

2. Experimental

Cu@mSiO₂ catalyst was prepared by a modified Stöber method with Cu(NH₃)₄²⁺ as copper precursor and PVP as dispersant (Cu loading was 7 wt.%). For comparison, Cu/mSiO₂ and Cu/SiO₂ catalysts were prepared by the impregnation method with copper nitrate as copper precursor and mesoporous silica (mSiO₂, $S_{\text{BET}} = 858 \text{ m}^2/\text{g}$, $d_p = 2.5 \text{ nm}$) and fumed silica (SiO₂, $S_{\text{BET}} = 208 \text{ m}^2/\text{g}$, $d_p = 26.2 \text{ nm}$) as supports.

The reaction of DOM was carried out in a fixed-bed reactor, and the reaction conditions are as follows: 230 °C, 1 atm, $n(Ar)/n(CH_3OH) = 3.7$, WHSV = 4 h⁻¹. TEM, XRD, N₂O titration, CO-TPD, XPS, N₂ physisorption, in situ DRIFT spectroscopy and isotope-labeling experiments were used to characterize the samples and study the catalytic mechanism.

3. Results and discussion

Figure 1. (a,b) TEM images of Cu@mSiO₂; (c) Catalytic results of Cu/SiO₂, Cu/mSiO₂ and Cu@mSiO₂ for DOM to MeF.

Figure 1a,b shows that the uniform spherical particles of as-synthesized $Cu@mSiO_2$ have a core-shell structure with highly dispersed 3.8 nm CuO nano-cores and mesoporous structure silica shell. Compared with Cu/mSiO₂ and Cu/SiO₂ prepared by the impregnation method, Cu@mSiO₂ gave higher MeF yield, stability and regenerated activity for DOM (Figure 1c). Interestingly, the average sizes of Cu NPs in the fresh, spent and regenerated Cu@mSiO₂ were almost the same. This unexpectedly high stability of Cu@mSiO₂ results from not only encapsulation of Cu NPs in mesoporous silica shell but also formation of Si–O–Cu structure.

Figure 2. (a) In situ DRIFT spectra of Cu@mSiO₂ reduced at 300 $^{\circ}$ C for DOM at 230 $^{\circ}$ C; (b) Reaction pathways over different copper sites in DOM.

Figure 2a shows the in situ DRIFT spectra of $Cu@mSiO_2$ reduced at 300 °C for DOM into MeF at 230 °C. The bands for HCHO species and MeF appeared, implying that HCHO is one of the key intermediates in DOM. In addition, the bands characteristic of Si–OCH₃ and Cu–OCH₃ were observed over the samples. This indicates that the O–H bond of methanol splits into H and CH₃O that further converts into HCHO through breaking of C–H bond. The bands for HCHO and MeF were also observed over Cu@mSiO₂ reduced at 450 °C with abundant Cu⁰ species, while they were not detected over the sample reduced at 200 °C dominated by Cu⁺ species. These confirm that Cu⁰ is responsible for the formation of MeF.

 Cu^0 and Cu^+ species generally coexist in the Cu-based catalysts. HCHO intermediate formed on and subsequently desorbed from the Cu^0 species possibly contact with Cu^+ sites. It was found that HCHO was completely converted over metallic Cu (model for Cu^0 sites) with MeF selectivity of 62% – 70%. Whereas, no MeF was generated over Cu_2O (model for Cu^+ sites), and HCHO was mainly converted into CO with a selectivity of $\approx 85\%$. For CH₃OH was simultaneously generated over metallic Cu, we employed an isotopelabeling experiment, and evidenced that MeF is formed via the hemi-acetal route (reaction of HCHO and CH₃O), not via HCHO dimerization (Tishchenko mechanism) (Figure 2b).

4. Conclusions

Cu NPs encapsulated in mesoporous silica shell shows unexpectedly high stability in the DOM to MeF. Cu^0 sites enable the cleavage of O–H in methanol to CH₃O, and further to HCHO by breaking C–H bond, while Cu⁺ species are unable to catalyze these steps, but immediately decompose HCHO generated on Cu⁰ into CO and H₂. The MeF is formed through the reaction of CH₃O and HCHO over the Cu⁰ sites, not via the Tishchenko mechanism.

References

- 1. S. Zhu, X. Gao, Y. Lei, W. Fan, J. Wang, Y. Li, Catal. Sci. Technol. 2015, 5, 1169–1180.
- 2. L. Chen, P. Guo, M. Qiao, S. Yan, H. Li, W. Shen, H. Xu, K. Fan, J. Catal. 2008, 257, 172-180.
- 3. S. Kuld, M. Thorhauge, H. Falsig, C. F. Elkjær, S. Helveg, I. Chorkendorff, J. Sehested 1, Science 2016, 325, 969–974.
- 4. N. W. Cant, S. P. Tonner, D. L. Trimm, M. S. Wainwright, J. Catal. 1985, 91, 197-207.