The low temperature oxidative upgrading of short chain alkanes over Cu/ZSM-5 catalysts: the role of Cu speciation.

<u>Robert D. Armstrong</u>^{a*}, Virginie Peneau^a, Nadine Ritterskamp^a, Christopher J. Kiely^b, Stuart. H. Taylor^a and Graham J. Hutchings^a

^a Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff, UK, CF10 3AT

^b Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, 18015-3195, Bethlehem, Pennsylvania, USA

*Corresponding author: ArmstrongR4@Cardiff.ac.uk

Abstract: C_1-C_3 alkanes are partially oxidised with H_2O_2 at 50 °C over Cu/ZSM-5 catalysts prepared by chemical vapour impregnation (CVI). The undoped ZSM-5 support is itself able to catalyse selective oxidations, for example, methane to methanol, using mild reaction conditions and H_2O_2 . Addition of Cu suppresses secondary reactions, affording methanol selectivities of up to 97 %. Characterisation studies attribute this to population of specific Cu sites below the level of total exchange (Cu/Al < 0.5). These species also show activity for radical- based methane oxidation, with productivities exceeding those of the parent zeolite supports. When tested for ethane and propane oxidation reactions, comparable trends are observed. **Keywords:** Selective Oxidation • Alkanes • Cu/ZSM-5

1. Introduction

Natural gas is a potential bridging resource for society's transition away from a petroleum- dependent economy. Direct oxidation of methane to oxygenates would be a key step in achieving this. However, this is yet to be achieved under conditions which are both green and industrially viable. Whilst processes for upgrading methane to value- added products have been commercialised, a high C-H bond energy (439.6 kJ mol⁻¹) means that harsh conditions are often employed for its activation. Under such conditions however, further conversion of the desired products to deeper oxidation products such as CO₂ stymie industrial viability. Several routes for direct methane oxidation have been reported, with many involving non-environmentally benign chemistries, which spurns the current trend towards green chemical technologies.

2. Experimental

NH₄ ZSM-5 (Zeolyst) was calcined in a flow of air (550 °C, 20 °C min⁻¹, 3h) to yield H-ZSM-5. The proton form zeolite was then either; activated in static air prior to testing (550 °C, 20 °C, 3h), or impregnated with Cu via chemical vapour impregnation (CVI). The procedure for preparation of 2.5 wt% Cu/ZSM-5 through CVI is as follows; H-ZSM-5 was dried (2 h, 150 °C) under vacuum. Once dried, H-ZSM-5 (1.95 g) was added to a Schlenk flask and (Cu (acac)₂) (Sigma Aldrich, 99.9% purity, 0.206 g, 0.787 mmol) added. Following physical mixing, the dry mixture was heated to 140 °C under vacuum (ca. 10⁻³ mbar) for 1 h. The sample was then calcined (550 °C, 20 °C min⁻¹, 3h) in static air.

Catalyst performance was assessed in a 50 mL Teflon lined Parr autoclave reactor. Aqueous products were quantified via ¹H NMR using a TMS/ CDCl₃ internal standard. Gaseous products were quantified via GC-FID. For EPR radical trapping studies, 5,5-Dimethyl-1-pyrroline N-oxide (0.05 g, Sigma Aldrich, > 97%) was added to the aqueous phase and reactions carried out for 5 min.

3. Results and discussion

Cu/ZSM-5 catalysts prepared by CVI were tested for the oxidation of methane under mild aqueous conditions utilising hydrogen peroxide as the oxidant. In line with previous studies, a metal loading of 2.5 wt% Cu was employed ¹, whilst the SiO₂/Al₂O₃ ratio was varied within the range of 23 – 280. Reaction data at t = 0.5 h are presented in Table 1. Of the catalysts tested, 2.5% Cu/ZSM-5 (SiO₂/Al₂O₃ = 23) showed relatively high activity, with 42.8 µmol products formed and 97.4 % selectivity towards methanol. This is compared with the previously reported 2.5 % Cu/ZSM-5 (30), which yielded 8.4 µmol products at 78.5 %

methanol selectivity. Further increasing the SiO_2/Al_2O_3 to 50 or 280 (at a fixed loading of 2.5 wt. % Cu) led to further decreases in catalyst activity.

Entry	SiO ₂ / Al ₂ O ₃	% wt Cu	Cu/Al ratio	Total Product /	roduct / Product / µmol				ULO / M	S(MeOH)
				μmol	MeOH	MeOOH	HCOOH	CO ₂	χ H ₂ O ₂ / %	/ %
1	23	2.5	0.41	42.82	41.7	0.57	0	0.55	8.68	97.38
2	30	2.5	0.59	8.37	6.57	1.29	0	0.51	2.48	78.49
3	50	2.5	0.76	0.52	0.00	0.14	0	0.38	1.83	0.00
4	280	2.5	4.08	2.2	0.43	1.43	0	0.34	11.40	19.55
m (1 07	. 1 . 0	51 D(CIL)	20.1 (0.02	1) 50.00	1500	III O I	0514(10	1 5000	1)

Table 1 Catalytic data for methane oxidation catalysed by Cu/ZSM-5 of varied SiO₂/Al₂O₃ and Cu/Al ratios.

Test conditions; 27 mg catalyst, 0.5 h, P(CH₄) = 30 bar (0.03 mol), 50 °C, 1500 rpm, [H₂O₂] = 0.5 M (10 ml, 5000 µmol).

Characterisation of the catalysts in Table 1 via HRTEM, H₂-TPR, NH₃-TPD and DRIFTS showed the rate of methane oxidation to be independent of the size/ dispersion of supported Cu- oxide nanoparticles. Rather, enhanced rates of alkane oxidation and high selectivity towards 1° products were found to correlate with the degree of cation exchange, with a Cu/Al of < 0.5 favoured, as shown in Table 1. In probing ion exchanged Cu sites with NO, four IR- active stretching bands were observed (Fig. 1). These have previously been assigned to N-O-Cu²⁺ with exchanged divalent Cu²⁺ of; square pyramidal (AlO₄⁻ pair, 1915 cm⁻¹, *Cu-I* sites), square planar (single AlO₄⁻, 1895 cm⁻¹, *Cu-II* sites), square pyramidal (AlO₄⁻ pair, 1921 cm⁻¹)^{2,3}. A band at 1811 cm⁻¹ (monovalent Cu⁺-NO species)) has also been reported and attributed to highly reducible Cu²⁺ sites.^{2,3} Population of Cu²⁺ species associated with AlO₄⁻ pairs (1915 cm⁻¹) is favoured below total exchange (Cu/Al < 0.5). This correlates with enhanced catalytic activity and methanol selectivity in Table 1. EPR radical trapping studies (Fig. 2a) show that 2.5% Cu/ZSM-5 (23) produces a significant flux of ·OH radicals, whilst population of *Cu-II* sites correlates with suppression of this (Figs. 2b/2c). Comparable trends in reaction rates and selectivity were observed when the same Cu/ZSM-5 catalysts were tested for the partial oxidation of ethane and propane.

Figure 1. IR bands of NO adsorbed onto 2.5 wt% Cu/ZSM-5 of $SiO_2/Al_2O_3 =$ (a) 23, (b) 30, (c) 50 and (d) 280.

Figure 2. DMPO spin- trapping data obtained during methane oxidation catalysed by (a) 2.5 % Cu/ZSM-5 (23), (b) 2.5 % Cu/ZSM-5 (30) and (c) 2.5% Cu/ZSM-5 (280)

4. Conclusions

These data suggest that (i) \cdot OH are generated at and relatively stable over *Cu-I* sites and that either (ii) *Cu-I* species act as active sites for selective alkane oxidation or (iii) *Cu-I* sites propagate generation of \cdot OH, with alkane activation occurring on a secondary active site within the catalyst. Conversely, the previously reported DFT- derived mechanism for ZSM-5 catalysed methane oxidation with H₂O₂ involved a concerted, molecular active site with no input of oxygen based radicals.

References

1. C. Hammond, M.M. Forde, M.H. Ab Rahim, A. Thetford, Q. He, R.L. Jenkins, N. Dimitratos, J.A. Lopez-Sanchez, N.F. Dummer, D.M. Murphy, A.F. Carley, S.H. Taylor, D.J. Willock, E.E. Stangland, J. Kang, H. Hagen, C.J. Kiely, G.J. Hutchings, Angew. Chem. Int. Ed., 51 (2012) 5129-5133.

2. B. Wichterlova, J. Dedecek, Z. Sobalik, A. Vondrova, K. Klier, J. Catal., 169 (1997) 194-202.

3. B. Wichterlova, Z. Sobalik, A. Vondrova, Catalysis Today, 29 (1996) 149-153.