Pore structure of TiO₂-modified ZrO₂ particles prepared by the glycothermal method

Fuya Sugiyama, Shinji Iwamoto*

Graduate School of Science and Technology, Gunma University, Kiryu, 376-8515, Japan *Corresponding author: E-mail siwamoto@gunma-u.ac.jp

Abstract: Titania-modified zirconia was synthesized via thermal reaction of zirconium *n*-propoxide and titanium isopropoxide in 1,4-butanediol at 300 °C. The obtained powders were spherical particles composed of TiO₂-ZrO₂ solid solution nanocrystals. The product had a large surface area (160 m²/g) and a relatively narrow pore size distribution. After calcination at high temperatures, the TiO₂-modified ZrO₂ sample preserved large surface areas and narrow pore size distributions, and these results indicate superior thermal stability of this material.

Keywords: ZrO₂, Glycothermal method, Pore structure.

1. Introduction

Zirconia and zirconia-based oxides have been used as catalysts and catalysts supports for various reactions, and improvement in the thermal stability and control of the morphology as well as pore structure of these materials are of great importance. Recently, synthesis of spherical metal oxide particles with homogeneous size and shapes have been correcting much attention to improve catalyst performance. A solgel method is one of the preferable methods for this purpose [1, 2]; however, the obtained products are amorphous or oxides with low crystallinity, and heat treatment are necessary to obtain well-crystallized products. On the contrary, it is previously reported that spherical zirconia particles composed of nanocrystalline zirconia were directly obtained via thermal reaction of zirconium alkoxide in 1,4-butanediol (glycothermal method) [3]. Furthermore, it is also reported that an addition of small amounts of TiO₂ significantly improved the thermal stability of the zirconia-based oxides materials [4]. In this study, titania-modified zirconia samples were prepared by the glycothermal method and their morphology, thermal stability and pore structure were investigated.

2. Experimental

Zirconium *n*-propoxide (19.77 g) and titanium isopropoxide (2.32 g, Ti/Zr = 0.136) were suspended in 1,4-butanediol (100 mL) and the mixture was placed in a 300-mL autoclave. After the atmosphere of inside the autoclave was replaced with nitrogen, the mixture was heated to 300 °C at a rate of 2.5 °C min⁻¹, and kept at that temperature for 2 h under the autogenous pressure of the solvent. After the glycothermal reaction for 2 h, the valve of the autoclave was slightly opened to remove organic vapor from the autoclave by flashing evaporation while keeping the temperature at 300 °C. After cooling, dry powders were obtained directly. The products were calcined at a prescribed temperature for 1 h in a box furnace.

Powder X-ray diffraction patterns were collected on a Rigaku RINT 2200VF using CuK α radiation. Scanning electron microscopy measurement was performed on a JEOL JSM-6510AS. Specific surface area was calculated using the BET multipoint method with a Quantachrome Instruments NOVA 2200e. Pore size distribution was calculated on the basis of N₂ adsorption isotherm using the BJH method.

3. Results and discussion

In Figure 1, SEM images of the ZrO_2 and TiO_2 -modified ZrO_2 obtained by the glycothermal method are shown. The ZrO_2 powders were spherical particles with ~10 µm size. For TiO_2 -modified ZrO_2 , spherical particles with smaller size were observed. After calcination at 600 °C, the particle sizes of these samples became slightly smaller; however, spherical shapes were preserved. In Figure 2, XRD patterns of the

products are depicted. For the as-synthesized ZrO_2 , a tetragonal phase was mainly observed and as the calcination temperature increases the tetragonal phase transformed to a monoclinic phase. As shown in Table 1, the ZrO_2 sample had a quite large surface area; however, the surface area decreased significantly after calcination at higher temperature. On the contrary, the XRD patterns of the TiO₂-modified ZrO₂ did not change significantly, and higher surface areas are

preserved even after calcination at 600 °C. In Figure 3, N_2 adsorption isotherms and pore size distributions of the ZrO_2 and TiO_2 -modified ZrO_2 are shown. The shape of isotherm was classified as type IV with hysteresis loop, and corresponding mesopore peaks can be seen in the pore size distributions. For the ZrO_2 samples, the pore volume

decreased gradually as the increase in the calcination temperature. A shift in the pore size distribution to larger side was also recognized. On the contrary, the pore volumes for TiO₂-modified ZrO₂ samples, which were much larger than those of the ZrO₂ samples, did not decrease after the calcination at 600 °C. In addition, the pore size distributions for TiO₂-modified ZrO₂ was narrower than those of ZrO₂ samples. These results indicate superior properties of this sample for catalytic applications.

4. Conclusions

By thermal reaction of zirconium *n*- and titanium alkoxides in 1,4-butanediol at 300 °C, spherical particles composed of nanocrystalline TiO₂-modified ZrO₂ were obtained. The thus obtained TiO₂-modified ZrO₂ had large surface area, pore volume, and narrow pore size distribution. Even after calcination at 600 °C, the sample preserved large surface area and pore structure.

References

- C. Zhang, C. Li, J. Yang, Z. Cheng, Z. Hou, Y. Fan, J. Lin, *Langmuir*, 25 (2009) 7078.
- H. Uchiyama, K. Takagi, H. Kozuka, *Colloids and Surfaces A*, 403 (2012) 121.
- S. Kongwudthiti, P. Praserthdam, P. Silveston, M. Inoue, Ceram. Intern., 29 (2003) 807.
- K. Kubo, S. Hosokawa, S. Furukawa, S. Iwamoto, M. Inoue, *J. Mater. Sci.*, 43 (2008) 2198.

(a) ZrO₂ (b) TiO₂-modified ZrO₂

Figure 1. SEM images of (a) ZrO₂ and (b) TiO₂-modified ZrO₂ prepared by the glycothermal method.

Figure 2. XRD patterns of (a) ZrO₂ and (b) TiO₂-modified ZrO₂.

Table 1. Physical properties of ZrO_2 and TiO_2 -modified ZrO_2

Calcination temperature (°C)	BET surface area (m^2/g)		Pore volume (cm ³ /g)	
	ZrO_2	TiO ₂ -ZrO ₂	ZrO_2	TiO ₂ -ZrO ₂
300 400 500 600	192 124 111 57.9	167 162 141 122	0.18 0.18 0.16 0.12	0.32 0.35 0.30 0.29

Figure 3. N₂ adsorption isotherm and pore size distribution of (a) ZrO₂ and (b) TiO₂-modified ZrO₂.