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Abstract: P-modification to ZSM-5 catalysts increases the hydrothermal stability which is important in 
catalytic naphtha cracking process. Despite extensive studies, the exact nature of the interaction between P 
and ZSM-5 has not been fully understood. Here we present a combined spectroscopy results by solid-state 
NMR and UV Raman spectroscopy, and synchrotron small angle X-ray scattering. 
 
Keywords: P-ZSM-5, NMR, UV Raman, SAXS.  
 
1. Introduction 

ZSM-5 has been widely used in the petroleum industry as a heterogeneous catalyst. P-modified ZSM-
5 shows higher activity and selectivity than ZSM-5 in many catalytic reactions. Phosphorous acts as a 
promoter in the methanol-to-hydrocarbon reaction. P-modification also improves the hydrothermal stability 
of ZSM-5, which is significant in naphtha cracking process to produce light olefins such as propylene. Many 
structural models of ZSM-5 interacting with P have long been proposed. However, the exact nature of the 
interaction has not yet been known.1 A combined spectroscopy provides more comprehensive information 
than a single spectroscopy does. Here we present an example of a combined scattering and spectroscopic 
investigation, including small angle X-ray scattering, solid-state NMR and UV Raman spectroscopy, which 
provides complementary information at the nano, atomic, and molecular scales.  

 
2. Experimental 

P-modified ZSM-5 (P-ZSM5) catalysts were prepared by incipient wetness impregnation using 
HZSM-5 and H3PO4 solution. H3PO4-added HZSM-5 were dried at 100°C overnight and calcined at 550°C 
for 6 hours. The naphtha cracking activity of the P-modified ZSM-5 was evaluated in a fixed-bed reactor 
before and after steaming at 800°C for 24 h in 100 % steam.2 

Solid-state MAS NMR experiments were performed on a Bruker Avance III HD spectrometer with a 
MAS 2.5-3.2 mm probe, operating at 10-20 kHz spinning speeds. 27Al, 29Si, 31P MAS NMR spectra were 
referenced to 1M Al(NO3)3, TMS, 1M H3PO4, respectively at 0 ppm. UV excitation wavelengths for UV 
Raman measurements were provided by third- or fourth-harmonic generation output of a 4 kHz repetition 
rate, nanosecond pulsed, wavelength-tunable Ti:Sapphire laser. The scattered light from the sample was 
refocused by using a home-made 90° off-axis ellipsoidal reflector with the backscattering geometry to a 
triple-grating spectrometer where Rayleigh light is filtered out and stray light is significantly suppressed.3 
UV Raman light was collected by a liquid N2-cooled UV-enhanced CCD detector. Small Angle X-ray 
Scattering (SAXS) measurements4 were performed at the 12-ID-B high-flux undulator beamline at the 
Advanced Photon Source in Argonne national laboratory. The incident X-ray beam energy was tuned to be 
14.0 keV (0.8856 Å) and focused onto the sample. The scattering angle 2θ was converted into the magnitude 
of the scattering vector, q= 2π/d =4π sinθ/λ where d is Bragg spacing, λ is wavelength, and 2θ is scattering 
angle. 
 
3. Results and discussion 



Fig. 1 compares 27Al-NMR spectra for ZSM-5 (‘Z’), steam-treated Z (‘ZS’), P-ZSM5 (‘ZP’), steam-
treated P-ZSM5 (‘ZPS’) catalysts. The peaks at 53 ppm and -1.1 ppm appear in ‘’Z’ spectrum and are due to 
tetrahedrally coordinated framework Al and octahedrally coordinated framework Al species with three Si-O 
(i.e., Al-O-Si) bonds and three Al-(OH2) bonds, respectively.5 In contrast, the spectrum of ‘ZS’ does not 
show any notable 27Al peak, suggesting the formation of 3-coordinate Al, which is 27Al-NMR silent due to 
strong quadrupolar interactions of the low-symmetry site. A 29Si-NMR and UV Raman spectroscopic 
comparison of ‘Z’ and ‘ZS’ indicates a slight elongation of Si-Si distance (in Si-O-Si bonds) and almost 
complete removal of Al atoms from the zeolite framework (i.e., dealumination) after the steam treatment. A 
SAXS comparison suggests a significant increase in external surface area of ZSM-5 particles and the 
formation of small nanoparticles, consistent with the results of N2 adsorption measurements and TEM 
images.  

The effect of P modification is also shown in Fig. 1 (27Al-NMR only). Intensity-normalized 29Si-, 27Al-, 
31P-NMR spectroscopic comparison of ‘Z’ and ‘ZP’ shows a slight elongation of Si-Si distance, a decrease 
of Brønsted acidity, and the formation of Oh-coordinated short-chain phosphates, highly likely at the zeolite 
external surface rather than in the pores of zeolites. However, P-induced elongation of Si-Si distance in Si-
O-Si bonds and the decrease of Brønsted acidity suggests the presence of P in the zeolite pores, too. UV 
Raman spectra suggest a specific structure of phosphate, which coordinates to the external surface and the 
pores of ZSM-5. And, solid-state NMR, UV Raman, and SAXS comparison of ZS and ZPS will also be 
discussed in the presentation. 

 

 
Figure 1. 27Al-NMR spectra for ZSM-5 (‘Z’), steam-treated Z (‘ZS’), P-ZSM5 (‘ZP’), steam-treated P-ZSM5 (‘ZPS’) catalysts  
 

4. Conclusions 
Solid-state NMR, small angle X-ray scattering, and UV Raman spectroscopic investigation of P-

ZSM5 provides useful, complementary information at the nano, atomic, and molecular scales. This work 
also shows the first UV Raman spectroscopic and SAXS measurements for P-ZSM5. 
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