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Abstract: The catalytic decomposition of formic acid (HCOOH) at Pd-Au bimetallic surfaces was studied 

using temperature-programmed desorption (TPD) and reactive molecular beam scattering (RMBS) tech-

niques.  Using H2-TPD, Pd-Au interface sites and Pd(111)-like sites (lack neighboring Au atoms) are charac-

terized qualitatively and quasi-quantitatively at the Pd-Au model surface.  HCOOH-RMBS experiments in-

dicate that surface Pd atoms facilitate the activation of HCOOH via dehydrogenation at Pd-Au interface sites, 

whereas via dehydration at Pd(111)-like sites.  These findings suggest that the HCOOH dehydrogenation at 

Pd-Au surfaces could be optimized by controlling the arrangement of surface Pd and Au atoms. 
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1. Introduction 

Hydrogen is a promising energy carrier for electricity generation in a fuel cell; however, hydrogen 

storage and distribution remain challenging issues.  Formic acid (HCOOH) has been proposed as a potential 

liquid organic hydrogen carrier (LOHC) to circumvent these issues.  For practical applications, suitable cata-

lysts are essential to facilitate HCOOH decomposition via dehydrogenation as opposed to dehydration to 

supply H2 at ambient temperatures.  Pd-Au catalysts have shown exceptional performance for H2 production 

from HCOOH decomposition.1, 2  The high yield toward H2 production has been attributed to (i) a higher 

resistance to CO poisoning due to alloying of Pd with Au;1 and (ii) the possible charge transfer between Au 

and Pd (i.e., a ligand effect).2  In this contribution, the surface chemistry of HCOOH on Pd-Au bimetallic 

model surfaces was investigated3 using a surface science approach in an attempt to enhance the fundamental 

understanding to the catalytic properties of Pd−Au bimetallic surfaces for HCOOH decomposition. 

 

2. Experimental 

All experiments3 were conducted in an ultrahigh vacuum (UHV) chamber equipped with an Auger 

electron spectrometer (AES), a quadrupole mass spectrometer (QMS), and Fourier transform infrared spec-

trometer (FT-IR).  Pd-Au bimetallic surfaces were generated by depositing 1-4 monolayer (ML) of Pd atoms 

onto the Au(111) surface at 77 K followed by annealing to 500 K for 10 min.  The surface structures of an-

nealed Pd-Au surfaces were characterized by AES, FT-IR using CO as a probe molecule, and H2-TPD.  H2-

TPD is used to provide the qualitative and quasi-quantitative information regarding the Pd-Au interface sites 

and Pd(111)-like sites at the surface.  The reactivity of HCOOH at Pd-Au surfaces was evaluated by 

HCOOH-RMBS and HCOOH-TPD.  The activity for HCOOH decomposition and selectivity for H2 produc-

tion at Pd-Au surfaces was estimated from the QMS signals of HCOOH, H2, CO2, CO, and H2O during 

HCOOH impingement at a surface temperature of 500 K. 

 

3. Results and discussion 

The H2-TPD results of Pd-Au surfaces are depicted in Figure 1.3  The peaks centered at ~208 K and 

~300 K are assigned as the desorption of H2 from Pd-Au interface sites and Pd(111)-like sites, respectively.   

The integral of the peak area under each H2-TPD trace is proportional to the amount of Pd atoms at each 

surface.  The relative number of surface Pd atoms increased from 0.32 to 1 (relative to that of the annealed 4 
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ML Pd/Au(111) surface) for the Pd-Au surface with the initial Pd coverage from 1 to 4 ML (Table 1).3  The 

fraction of Pd-Au interface site is estimated as unity for the annealed 1 ML Pd/Au(111) surface and reduces 

to ∼0.6 for surfaces with higher initial Pd coverages, i.e., 2−4 ML.  The reactivity of HCOOH on Pd-Au 

surfaces was evaluated by HCOOH-RMBS (Table 1).3  The HCOOH decomposition rate increased as the 

relative number of surface Pd atoms increased, suggesting that the presence of Pd adatoms on the Pd−Au 

surface can facilitate HCOOH decomposition (no HCOOH decomposition was detected on the Au(111) 

surface under the same conditions).  A sharp increase in the HCOOH decomposition rate was observed with 

the emergence of Pd(111)-like sites.  The specific activity for H2 production is expressed in terms of turno-

ver frequency (TOFH2).  With the increase of the relative number of surface Pd atoms, the TOFH2 first in-

creased to 0.012 H2 PdS
−1 s−1, and then slightly decreased to 0.009 H2 PdS

−1 s−1.  These results suggest that the 

side reaction, i.e., dehydration (or decarbonylation), occurs.  The dehydrogenation selectivity is expressed 

by the relative H2/CO QMS area ratios (Figure 2).  It is found that hydrogen selectivity correlates well with 

the fraction of Pd atoms that exist as Pd−Au interface sites, suggesting that HCOOH dehydrogenation oc-

curs at Pd−Au interface sites on the surface.  

 

Table 1. Summary of relative number of surface Pd atoms, fraction of Pd-Au interface sites, HCOOH decomposition rate, turnover 

frequency for H2 production, relative H2/CO QMS ratio on the annealed Pd/Au(111) surfaces.3 

Initial Pd 

coverage 

(ML) 

Relative number of 

surface Pd atoms 

(-) 

Fraction of  

Pd-Au interface sites 

(-) 

HCOOH  

decomposition rate 

(HCOOH cm-2 s-1) 

Turnover frequency 

for H2 production 

(H2 PdS
−1 s−1) 

Relative H2/CO 

QMS ratio 

(-) 

1 0.32              1 3.5 × 1012 0.006           2.08 

2 0.63              0.66 1.4 × 1013 0.012           1.19 

3 0.84              0.62 3.3 × 1013 0.011           1.05 

4 1              0.60 4.4 × 1013 0.009           1 

 

 

4. Conclusions 

We have conducted a model catalyst study showing that Pd atoms which lack adjacent Au atoms favor 

dehydration of HCOOH, whereas Pd atoms that possess Au atoms as nearest neighbors favor dehydrogena-

tion of HCOOH, which is desirable for efficient production of hydrogen.  We believe these findings will be 

informative for the design of Pd−Au bimetallic catalysts that selectively decompose HCOOH to produce 

hydrogen. 
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Figure 1. H2-TPD spectra from Pd−Au surfaces with initial 

Pd coverages ranging from 0 to 4 ML.3 

 

 
Figure 2. Relative H2/CO QMS area ratios from HCOOH 

decomposition vs. the fraction of Pd−Au interface sites on 

Pd−Au surfaces.3 


