Vibration-driven reaction of CO₂ on Cu surface via Eley-Rideal type mechanism

<u>Takumi Imabayashi</u>^a, Jiamei Quan^b, Taijun Kozarashi^a, Tomoyasu Mogi^a, Kotaro Takeyasu^b, Takahiro Kondo^{b,c}, Junji Nakamura^{b,c*}

^aGraduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

^bFaculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan ^cTsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

*Corresponding author: nakamura@ims.tsukuba.ac.jp

Abstract: The formate (HCOO) synthesis is known as the initial reaction step of methanol synthesis via Eley-Rideal type mechanism¹⁻² (CO₂ + H_a \rightarrow HCOO_a, "a" denotes adsorbates). In experiment, we have irradiated hot CO₂ molecular beam (various translational and vibrational energy conditions) to Cu surface at 120–220 K with pre-adsorbed hydrogen to form formate adspecies. Experimental results indicate the vibrational energy of CO₂ is effective for the reaction, but not the translational energy; and the reaction rate is independent of the surface temperature. We conclude that vibrational energy occupies most of the activation energy of this reaction.

Keywords: Vibration-driven reaction, Eley-Rideal type mechanism, Hydrogenation of CO₂.

1. Introduction

Methanol synthesis (CO₂ + 3H₂ \rightarrow CH₃OH + H₂O) over Cu-based catalysts such as Cu/ZnO/Al₂O₃ is considered to be the most promising catalytic process for the conversion of CO₂. The hydrogenation of CO₂ into formate intermediates (HCOO_a) is especially an important reaction step for methanol synthesis insofar as it represents the initial activation process of CO₂ on Cu surfaces; this is because the reaction probability of the formation of formate is very low (~10⁻¹²) at 340 K. The formate is reported to be directly formed by the collision of CO₂ in gas phase with atomic hydrogen on Cu surface (CO₂ + H_a \rightarrow HCOO_a, "a" denotes adsorbates) via Eley-Rideal type mechanism¹⁻². The objective of this work is to clarify the effect of surface temperature, CO₂ translational energy (E_{trans}) and vibrational energy (E_{vib}) on formate synthesis.

2. Experimental

The experiment of formate formation under ultra-high vacuum condition was examined by reacting a hot CO_2 molecular beam (diluted with He) with pre-dosed cold atomic hydrogen (H_a) until saturated (coverage of 0.5 ML) on a Cu(111) and Cu(100) surface (H_a/Cu). The energy (translational energy and vibrational energy) of CO_2 is controlled by supersonic molecular beam technique. The atomic hydrogen was prepared by dissociation of H₂ on a hot W filament with desorption of H atoms. After the CO_2 beam irradiation, temperature-programmed-desorption (TPD) were successively carried out to detect the formation of formate.

3. Results and discussion

TPD results have showed the desorption of H_2 and CO_2 molecules due to the recombination of preadsorbed hydrogen atoms or the formate decomposition on Cu surface. These indicate that the formate originates from the reaction of CO_2 beam with H_a . By analyzing the TPD peak area of H_2 desorption, we can obtain the initial reaction probability (P_0) of formate synthesis.

To clarify this reaction dynamics, the effects of the surface temperature (T_{surf}), the translational energy and the mean vibrational energy (\bar{E}_{vib}) of CO₂ on P_0 were examined on Cu(111) and Cu(100). As shown in Figure. 1A, P_0 is anomalously independent of the surface temperature in the range of 120–220 K under fixed $E_{trans} = 1.97$ eV and 1.46 eV, $T_{vib} = 1000$ K. This means a thermal non-equilibrium reaction, in which the rate of the formate formation is determined by the temperature or energy of CO₂ rather than the surface temperature. Furthermore, the thermal non-equilibrium feature indicates the E-R type mechanism, in which the CO_2 molecule is not thermally equilibrated with the Cu surfaces but directly reacts with H_a .

Figure 1, B and C show the effects of E_{trans} and $\overline{E}_{\text{vib}}$ on P_0 on Cu(111) and Cu(100), respectively. P_0 increases upon increasing E_{trans} from 1.12 to 1.97 eV, where $\overline{E}_{\text{vib}}$ is constant at 142 meV. Although P_0 tends to be larger on Cu(111) compared to Cu(100), this increasing trend was observed for both surfaces. As for the $\overline{E}_{\text{vib}}$ dependence shown in Fig. 1C, P_0 also increases with $\overline{E}_{\text{vib}}$ between 87–142 meV (corresponding T_{nozzle} of 775–1000 K) for both surfaces with E_{trans} fixed at 1.30 eV and 1.56 eV. The slope for $\overline{E}_{\text{vib}}$ (Fig. 1C) is much greater than that for E_{trans} (Fig. 1B), indicating that the $\overline{E}_{\text{vib}}$ is much more efficient for overcoming the reaction barrier.

(A) T_{surf} dependence of P_0 at $E_{\text{trans}} = 1.97$ eV and $E_{\text{trans}} = 1.46$ eV. $T_{\text{nozzle}} = 1000$ K.

(B) E_{trans} dependence of P_0 at $T_{\text{nozzle}} = 1000 \text{ K}$ ($\overline{E}_{vib} = 142 \text{ meV}$) and $T_{\text{surf}} = 180 \text{ K}$.

(C) mean vibrational energy \bar{E}_{vib} (or T_{nozzle}) dependence of P_0 at $E_{trans} = 1.30$ and 1.56 eV and $T_{surf} = 180$ K

4. Conclusions

The surface temperature independence of P_0 and the energy of CO₂ dependence of P_0 indicate that formate synthesis proceeds via Eley-Rideal type mechanism. Vibrational energy of CO₂ occupies most of the activation energy of the reaction.

References

- 1. H. Nakano, I. Nakamura, T. Fujitani, and J. Nakamura, J. Phys. Chem. B 105, 1355 (2001).
- 2. G.Wang, Y.Morikawa, T.Matsumoto, and J.Nakamura, J. Phys. Chem. B 110, 9 (2006).