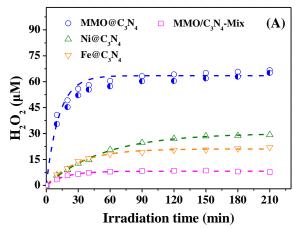
Earth-Abundant Mixed-Metal Oxide@Carbon Nitride Photocatalysts for H₂O₂ Generation Only From H₂O and O₂

Jianyi Liu, ^a <u>Xu Xiang*</u>^a

^a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China *Corresponding author: <u>xiangxu@mail.buct.edu.cn</u>


Keywords: H₂O₂, Photocatalyst, Carbon Nitride.

1. Introduction

Light-driven synthesis of H_2O_2 only from water and molecular oxygen could be an alternative pathway for solar fuels production.¹⁻⁴ Herein, we designed a dual-functional photocatalyst i.e., mixed metal oxide/graphitic- C_3N_4 (MMO@ C_3N_4) for both water oxidation and oxygen reduction to generate H_2O_2 .⁵

2. Results and discussion

The MMO@C₃N₄ photocatalyst led to rapid generation of H₂O₂, with an initial rate that exceeded 4.0 μ M min⁻¹ (in 30 min), which is superior to the controls (Figure 1). H₂O₂ has the largest formation rate and lower decomposition rate on the MMO@C₃N₄. H₂O₂ was produced only from water and dioxygen without any sacrificial organics (e.g. alcohols).

Figure 1. Light-driven H₂O₂ generation over the photocatalysts

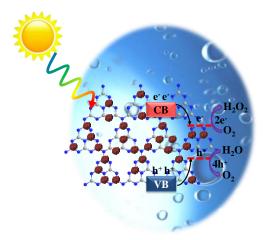


Figure 2. Scheme of energy levels and charge transfer

3. Conclusions

We developed a facile strategy to prepare an earth-abundant photocatalyst for H_2O_2 synthesis. This work provides a promising way for clean production of H_2O_2 owing to facile synthesis and extremely accessible feedstocks.

References

- 1. Tsukamoto, A. Shiro, Y. Sugano, T. Hirai, ACS Catal. 3 (2013) 2222.
- 2. Y. Shiraishi , S. Kanazawa, Y. Kofuji , et al. Angew. Chem. Int. Ed. 53 (2014) 13454.
- 3. Y. Li, L. Zhang, X. Xiang, et al. J. Mater. Chem. A 2 (2014) 13250.
- 4. W. He, Y. Yang, L. Wang, et al. ChemSusChem 8 (2015) 1568.
- 5. R. Wang, K. Pan, X. Xiang, et al. ChemSusChem 9 (2016) 2470.