Interface-Promoted Dehydrogenation and Water-Gas Shift toward High-Efficient H₂ Production from Aqueous Phase Reforming of Cellulose

Jian Zhang, Zhe An, Jing He *

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

*Jing He: Fax: +86-10-64425385, Email: jinghe@263.net.cn or hejing@mail.buct.edu.cn

Abstract: Hydrogen production from cellulose via aqueous phase reforming (APR) has aroused increasing attention, but its efficiency remains challenging. Here, we report an interface-promoted Ni particle catalyst, in which Ni particles are distributed on the surface of layered double oxide (LDO) in narrow size and form abundant Ni-support interfaces and interfacial interactions. The Ni-LDO interfaces and interfacial interactions are enhanced by preparing the LDO-supported Ni from in situ reduction of Ni-containing Mg/Al layered double hydroxides (LDHs). A H₂ production activity of up to 40.8 mmol•g_{catal}⁻¹g_{cellulose}⁻¹h⁻¹ with a H₂ yield of up to 30.9 % was achieved.

Keywords: hydrogen production, supported Ni particles, interfacial promotion.

1. Introduction

Hydrogen is identified as the energy of twenty-first century because it possesses highly calorific value and affords a clean combustion.¹ Almost 96 % of H₂ has been produced from fossil resources and 3.9 % from electrolysis of water till now.² H₂ production from renewable cellulose via aqueous phase reforming (APR) has aroused increasing attention due to its mild reaction conditions and low CO concentration in products.^{3,4} Although impressive progress has been achieved in the development of efficient catalyst and/or catalytic system for APR H₂ production, its efficiency remains challenging. Here we report a highly-efficient and stable APR catalyst for H₂ production from cellulose, where Ni nanoparticles uniformly dispersed on layered double oxides (LDO). And the LDO is supposed to serve simultaneously as a solid base to cooperate with supported Ni. The strong interfacial interactions between Ni particles and LDO facilitate both of dehydrogenation and WGS reactions, affording a H₂ production activity and a H₂ yield higher than reported so far. The LDO-supported Ni also demonstrated good stability in the APR.

2. Experimental

The NiMgAl-LDHs and MgAl-LDHs were synthesized by the co-precipitation method. For comparison, ⁵ Ni²⁺/MgAl-LDHs with various Mg/Al molar ratio were prepared by incipient wetness impregnation of MgAl-LDHs with Ni²⁺ solution. Then the NiMgAl-LDHs was reduced under H₂ flow. All catalysts investigated in this study were with Ni loading of 20 wt%. The catalytic materials were characterized by XRD, TEM, STEM, CO₂-TPD, and quasi in-situ XPS.

The catalytic testing was performed in a homemade batch reactor with a mechanical stirrer. The products were detected with a Chromategraph (GC) equipped with TCD detector.

3. Results and discussion

The LDO-supported Ni particle catalysts were applied as the catalysts for catalytic H_2 production from cellulose. The H_2 production activity and H_2 yield are clearly observed to increase with increasing amount of medium-strong and strong base sites, indicating a possible promotion of surface basic sites on the H_2 production. Almost no H_2 production activity and H_2 yield were observed over Mg₃Al-LDO containing almost the same base sites as the Ni/Mg₃Al-LDO, indicative of the dominating catalysis of Ni particles in the APR of cellulose. But it is interesting that higher H_2 production activity and H_2 yield achieved over Ni-Mg₃Al-LDO than over all the supported Ni catalysts with Ni-loaded by impregnation, while the amount of medium-strong and strong base sites on Ni-Mg₃Al-LDO is less than that on Ni/Mg₄Al-LDO or Ni/Mg₅Al-

LDO. This interesting result suggests that the basic sites promoted the H_2 production on Ni sites, which is consistent with the observations that the Ni-LDO interfaces are more abundant and the Ni-LDO interfacial interaction is stronger in Ni-Mg3Al-LDO observed in the quasi in-situ XPS analysis.

Figure 1. (a) Schematic illustration for the preparation of Ni particles supported on LDO from LDHs precursor and the catalytic mechanism of the APR process of oxygenated hydrocarbons for H_2 producing. (b) HAADF image and (c) line scan profiles of Mg and Ni elemental distribution for Ni-Mg₃Al-LDO.

Table 1. The catalytic evaluations toward H_2 production from APR of cellulose over Ni nanoparticle supported on solid base supports prepared by LDHs precursors or initial wetness impregnation method.^a

Entry	Catalyst	Solid base sites /(mmol CO ₂ /g)		Activity of H ₂	Yield of
		Medium-strong	strong	/ mmol /mmol _{surface Ni}	$H_2/\%$
1	Ni/Mg ₂ Al-LDO	0.33	0.42	232.5 (225.2)	19.1 (18.5)
2	Ni/Mg ₃ Al-LDO	0.63	0.34	310.9 (305.1)	24.9 (24.4)
3	Ni/Mg ₄ Al-LDO	0.59	0.57	384.5(381.8)	28.9 (28.7)
4	Ni/Mg5Al-LDO	0.48	0.54	338.7 (341.4)	26.7 (26.9)
5	Mg ₃ Al-LDO	0.59	0.39	9.5(10.1)	1.8 (1.9)
6	Ni-Mg ₃ Al-LDO	0.74	0.26	396.7 (399.1)	30.9 (31.1)

^a Conditions: cellulose 1.0 g, catalysts 140 mg, initial pressure 0.4 MPa N₂ (30 °C), T = 260 °C, 50 mL H₂O.

4. Conclusions

In summary, interface-promoted Ni catalyst has been developed in this work for the H₂ production directly from the real biomass cellulose. This interface-abundant structure was achieved through the in situ topological transformation of Ni containing Mg/Al-LDHs precursor. 40.8 mmol• g_{catal} -1 $g_{cellulose}$ -1h-1 with a H₂ yield of up to 30.9 % was achieved and the yield for H₂ production only decrease by 9 % even in fifth run,, showing superior performance to the catalysts reported so far.

References

- 1. R. V. Helmolt, U. Eberle, J. Power Sources 165 (2007) 833.
- 2. Hydrogen Production Worldwide and US total Hydrogen Production. http://hydrogen.pnl.gov.
- 3. R.R.D.J.A.D. R. D. Cortright, Nature 418 (2002) 964.
- 4. G.W. Huber, J.W. Shabaker, J.A. Dumesic, Science 300 (2003) 2075.
- 5. S. M śsz áros, J. Hal ász, Z. K ónya, P. Sipos, I. P álink ó, Appl. Clay Sci. 80-81 (2013) 245.