Selective synthesis of *N*-methylaniline from CO₂, H₂ and aniline over CeO₂-supported Cu sub-nanoparticle catalyst

Yu Gu,^a Masazumi Tamura,^a* Ayaka Miura,^a Yoshinao Nakagawa,^a Keiichi Tomishige^{a,*}

^aDepartment of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan *+81-22-795-7214, mtamura@erec.che.tohoku.ac.jp; +81-22-795-7215, tomi@erec.che.tohoku.ac.jp

Abstract: CeO_2 -supported Cu (Cu/CeO_2) was a very effective heterogeneous catalyst in the selective synthesis of *N*-methylaniline from aniline, CO₂ and H₂. High selectivity to *N*-methylaniline and moderate activity were achieved by the catalyst. Copper sub-nanoparticles are responsible for the high activity of the catalyst, and the CeO₂ support plays an important role in suppression of over-*N*-methylation of the target product, leading high selectivity to *N*-methylaniline.

Keywords: N-Methylation of amines, Carbon dioxide utilization, Copper sub-nanoparticle.

1. Introduction

N-Methylated amines are widely used chemicals as solvents and important intermediates for dyes, surfactants, pesticides, etc. Conventionally, *N*-methylated amines are prepared using methyl iodide, formaldehyde, or formic acid derivatives as a methyl source.¹ Considering the high price of these methylation reagents, *N*-methylation of amines with CO_2 and H_2 will be an attractive alternative for *N*-methylated amines production. However, selective synthesis of secondary amines by *N*-methylation of primary amines with CO_2 and H_2 is difficult because of the successive *N*-methylation of the produced *N*-methylamines to the tertiary *N*,*N*-dimethylamines (Scheme 1). To solve the problem, heterogeneous catalysts with high activity for mono-*N*-methylation are desired to be developed.

 $R-NH_{2} \xrightarrow{CO_{2}/H_{2}} R-NH \xrightarrow{CO_{2}/H_{2}} R-N$ primary amine secondary amine tertiary amine scheme 1. *N*-Methylation of primary amines with CO₂/H₂

Recently, we found that Cu/CeO_2 acted as an effective heterogeneous catalyst for hydrogenation of dimethyl carbonate to methanol.² The catalyst was obtained by impregnation method and the size of Cu particles on the support was found to be at sub-nanoscale. The Cu sub-nanoparticles are formed by the interaction with CeO₂ support. Considering that carbamic acid can easily generate from CO₂ and amines and the Cu/CeO₂ catalyst will be effective for the hydrogenation, we tested the Cu/CeO₂ catalyst in *N*-methylation of aniline to *N*-methylaniline with CO₂ and H₂.³

2. Experimental

CeO₂ used as support was obtained by calcining cerium oxide HS (Daiichi Kigenso, Japan) for 3 hours under air at 873 K. Cu/CeO₂ and Cu/support catalysts were prepared by impregnation method with an aqueous solution of Cu(NO₃)₂· $3H_2O$. Other CeO₂ supported monometallic catalysts were prepared by similar method using the corresponding precursors. All prepared catalysts were calcined at 773 K for 3 h. Carbon-supported 5 wt% metal catalysts were commercially available.

Activity tests were performed in a 190 mL stainless-steel autoclave with an inserted glass vessel. Reaction conditions were as follows: catalyst 0.3 g, aniline 0.19 g, toluene (solvent) 5 g, dodecane (internal standard) 0.15 g; CO₂ 1 MPa, H₂ 7 MPa; 433 K; 4 h. The products in the gas phase and liquid phase were analyzed by GC with Porapak N (GL Science) and DB-1 (Agilent J&W), respectively. Conversion of the substrate, and yield and selectivity of the products were determined on the basis of aniline by internal standard method.

3. Results and discussion

At first, catalytic performance of various CeO_2 -supported metal catalysts (M/CeO₂, M = Cu, Ir, Rh, Ru, Pd, Pt, and Ni) (Table 1, Entries 1-7) was compared in N-methylation of aniline with CO₂ and H₂. Among CeO₂-supported metal catalysts, Cu/CeO₂ acted as the most effective catalyst, showing moderate conversion, and high selectivity to N-methylaniline (1). Formanilide (2)was also produced, while N.Ndimethylaniline (3) was hardly observed (Entry 1). Although Ru/CeO₂ and Pd/CeO₂ exhibited higher conversion of aniline (Entrie 4 and 5), other products such as N-cyclohexylaniline and dicyclohexylamine were mainly formed, which indicates that hydrogenation of the aromatic ring in aniline to cyclohexylamine and coupling of the produced cyclohexylamines took place over these catalysts. In addition to the CeO₂-supported

noble metal catalysts, commercial carbon-supported noble metal catalysts (M/C, M = Pt, Pd, Rh and Ru) (data not shown) were also tested. Pt/C, Pd/C and Rh/C showed low conversion for the reaction, while Ru/C exhibited high conversion, but the products were similar to those achieved by using Ru/CeO₂. Other screened CeO₂-supported metal catalysts showed low conversion (Entries 2, 3, 6, and 7). Since Cu/CeO_2 was the most effective catalyst among the above catalysts, other Cu/support catalysts (support = Al₂O₃, ZrO₂, TiO₂, SiO₂, ZnO, MgO, and Y₂O₃) were also investigated (Table 1, Entries 8-14). Cu/Al₂O₃ and Cu/ZrO₂ catalysts (Entries 8 and 9) showed two-fold higher activity than that of the Cu/CeO_2 catalyst with higher selectivity to 1, while catalysts using other supports exhibited lower conversion (Entries 10-14). Therefore, Al₂O₃, ZrO₂, and CeO₂ are selected as effective supports in this reaction. In order to obtain high yield of 1, catalytic performance of Cu/CeO₂, Cu/Al₂O₃ and Cu/ZrO₂ were compared at similar high conversion level (70-80%), and the result is shown in Figure 1. Obviously, Cu/CeO₂ showed higher selectivity to 1 up to 98%, and formation of 3 caused by over-N-methylation was suppressed.

Table 1. N-Methylation of aniline with CO2 and H2 over various catalysts

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	cuturysts						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				H +	ΥΎ.	+ () N_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-		1	2	3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Enter	Catalyst	Conv.		Selecti		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Entry		/%	1	2	3	Others ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Cu/CeO2	16	88	12	<1	<1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	Ir/CeO ₂	2	43	57	<1	<1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	Rh/CeO2	2	14	20	<1	66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	Ru/CeO2	>99	<1	<1	<1	>99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	Pd/CeO ₂	60	<1	6	<1	94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Pt/CeO2	< 1	-	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	Ni/CeO ₂	< 1	-	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	Cu/Al_2O_3	36	97	1	2	<1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	Cu/ZrO_2	30	94	6	<1	<1
12 Cu/ZnO 5 84 15 <1 1	10	Cu/TiO ₂	6	97	<1	3	<1
	11	Cu/SiO ₂	6	58	42	<1	<1
	12	Cu/ZnO	5	84	15	<1	1
13 Cu/MgO 3 87 8 2 3	13	Cu/MgO	3	87	8	2	3
14 Cu/Y ₂ O ₃ 1 68 32 <1 <1	14	Cu/Y2O3	1	68	32	<1	<1

Reaction conditions: aniline 0.19 g (2mmol), M/support (M: 1wt%) 0.3 g, toluene 5 g, 433 K, 1 MPa CO₂, 7 MPa H₂, 4 h. ^aOthers are mainly *N*-cyclohexylaniline and dicyclohexylamine.

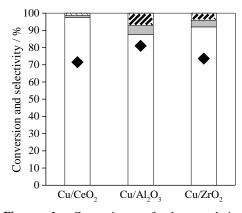


Figure 1. Comparison of the catalytic performance of Cu/CeO₂ (42 h), Cu/Al₂O₃ (16 h) and Cu/ZrO₂ (16 h) at similar high conversion level in *N*-methylation of aniline with CO₂ and H₂ (\blacklozenge : Conversion of aniline, white bar: selectivity to 1, gray bar: selectivity to 2, stripe bar: selectivity to 3). Reaction conditions: aniline 0.19 g, catalyst 0.5 g (Cu: 1wt%), toluene 5 g, 433 K, 1 MPa CO₂, 7 MPa H₂.

4. Conclusions

We demonstrated that Cu/CeO_2 catalyst has excellent catalytic performance towards selective synthesis of *N*-methylaniline by *N*-methylation of aniline with CO_2 and H_2 . Cu sub-nanoparticles were the main active species over CeO_2 support, which was responsible for the high selectivity.

References

- 1. R.N. Salvatore, C. Hwan, K.W. Jung, Tetrahedron 57 (2001) 7785.
- 2. M. Tamura, T. Kitanaka, Y. Nakagawa, K. Tomishige, ACS Catal. 6 (2016) 376.
- 3. M. Tamura, A. Miura, Y. Gu, Y. Nakagawa, K. Tomishige, Chem. Lett. 46 (2017) 1243.