Dehydrogenation of ethane on Ga oxide catalysts

<u>Hirofumi Seki</u>,^a Hikaru Saito,^a Shun Maeda,^b Shota Manabe,^a Tomohiro Yabe,^a Shuhei Ogo,^a Kunihide Hashimoto,^b Yasushi Sekine^a*

^aDepartment of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan ^bSteel Castings R&D Group, Materials Technology Department, Kubota Corp., 1-1-1, Nakamiya-Oike, Hirakata, Osaka 573-8573, Japan

*Corresponding author: +81-3-5286-3114, ysekine@waseda.jp (Y. Sekine)

Abstract: Catalysts for dehydrogenation of ethane were investigated for lowering cracking temperatures of ethane. Although Ga/α -Al₂O₃ catalyst showed high activity for dehydrogenation of ethane, it showed low stability. On the other hand, Ga/γ -Al₂O₃ calcined at 1323 K showed high activity and stability. To elucidate the effects of support and calcination temperature on the catalytic performance, XRD, TEM-EDX and XANES measurements were conducted. XRD revealed that only Ga/γ -Al₂O₃ calcined at 1323 K contained θ -Al₂O₃. TEM and XANES revealed that Ga was highly dispersed and the tetrahedral Ga mainly existed on the catalyst. Therefore, highly dispersed tetrahedral Ga would contribute to the high activity and stability. **Keywords:** Dehydrogenation of ethane, Ga catalyst, Calcination temperature.

1. Introduction

Ethylene is one of the important chemicals for plastics. In the petroleum industry, ethylene is produced by steam cracking of naphtha. Recently, raw materials for ethylene production have shifted from naphtha to ethane because ethane is a cheap feedstock due to the shale revolution¹⁾. However, in the process of ethane cracking, coke formation is a serious problem because it reduces the productivity²⁾. To solve the problem, coating a catalyst on the cracking coil for dehydrogenation of ethane is expected to suppress coke formation by lowering the reaction temperature. Therefore, we investigated metal oxide catalysts supported on α -Al₂O₃ as a model of the surface of the cracking coil. Ga/ α -Al₂O₃ showed high catalytic performance. In addition, Ga/ γ -Al₂O₃ or α -Al₂O₃ calcined at 1323 K or 1573 K were prepared to improve the dispersion of Ga and to form the solid solution. Various characterizations were also conducted to elucidate the nature of Ga species.

2. Experimental (or Theoretical)

The γ -Al₂O₃ (JRC-ALO-6) support was crashed into powder by a planetary ball mill (P-6; Fritsch GmbH). The α -Al₂O₃ support was prepared by calcining γ -Al₂O₃ in air at 1573 K for 3 h. Ga, Ge, In or Sn catalyst supported on α -Al₂O₃ was prepared by an impregnation method. The calcination temperature after metal loading was 1323 K. In addition, Ga/ α -Al₂O₃ and Ga/ γ -Al₂O₃ calcined at 1323 or 1573 K were prepared by the impregnation method. Ga catalysts are denoted as Ga-Al₂O₃ (1573pc+*x*c). The pre-calcination (pc) temperature before Ga loading is shown in case of α -Al₂O₃. Pre-calcination temperature is not shown when γ -Al₂O₃ was used. The calcination (c) temperature after Ga loading is denoted as *x*.

Catalytic activity tests were conducted in a fixed bed flow reactor at atmospheric pressure. The catalyst was sieved into 420-840 μ m and 100 mg of the catalyst was charged into the quartz tube (4 mm i.d.) with SiC (392 mg). The furnace was heated to 973 K. The feed gas composition was C₂H₆ : H₂O : N₂ = 1 : 1.36 : 5.41 at a total flow rate of 281.6 SCCM. Products were analyzed using a GC-FID with a methanizer (Ru/Al₂O₃).

Characterizations including XRD, TEM-EDX and XANES measurements were conducted. Plane wave basis pseudopotential calculations were implemented in the CASTEP code³⁾ to simulate XANES spectra. Details are written in the literature⁴⁾.

3. Results and discussion

As reported previously, Ga-Al₂O₃ (1573pc+1323c) showed a high catalytic performance⁴⁾. However, it showed low catalytic stability. Then, to improve the dispersion of Ga, catalysts were prepared using γ -Al₂O₃ as a support, which has higher specific surface area than α -Al₂O₃. In addition, the Ga catalysts supported on α -Al₂O₃ or γ -Al₂O₃ were calcined at 1573 K to form the solid solution. Figure 1 shows C₂H₄ formation rate with time on stream on each catalyst. From the results, Ga-Al₂O₃ (1323c) showed a high catalytic activity and stability.

Various characterizations were conducted to elucidate why Ga-Al₂O₃ (1323c) exhibited high catalytic performance. X-ray diffraction (XRD) analysis revealed that only Ga-Al₂O₃ (1323c) contained θ -Al₂O₃ structure and the others calcined at 1573 K contained α -Al₂O₃ structure. Peaks attributed to Ga species were not observed because Ga species were highly dispersed. Next, HAADF images and EDX mappings by FE-TEM were measured to evaluate the dispersion of Ga on the catalysts. As a result, Ga was highly dispersed

on Ga-Al₂O₃ (1323c) whereas Ga was agglomerated on Ga-Al₂O₃ (1573pc+1323c). Ga K-edge XANES spectra were measured to investigate the coordination environment and the electronic state of Ga species on the catalysts. In addition, XANES spectra for α -Ga₂O₃, β -Ga₂O₃, α -Ga₂O₃ "Al-rep" and β -Ga₂O₃ "Al-rep" were calculated. The description "Al-rep" shows the replacement of some Ga ions with Al ions. XANES spectra revealed that Ga-Al₂O₃ (1323c) had a similar structure to β -Ga₂O₃. Comparing the experimental spectra with calculated ones, the formation of Al₂O₃-Ga₂O₃ solid solution was confirmed in Ga-Al₂O₃ (1323c). In addition, Ga-Al₂O₃ (1323c) contains a large amount of tetrahedral Ga. Chen et al. reported that the tetrahedral Ga shows high activity for dehydrogenation of propane⁵⁾. The highly dispersed tetrahedral Ga species on Ga-Al₂O₃ (1323c) with highly dispersed contributes to the high activity and stability for dehydrogenation of ethane.

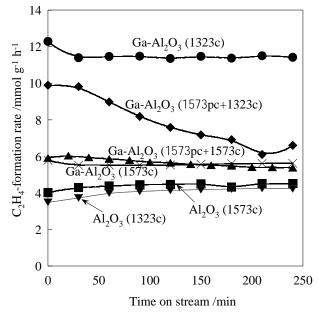


Figure 1. Activity test for various Ga-catalysts at 973 K⁴).

4. Conclusions

We investigated catalysts for dehydrogenation of ethane to lower reaction temperature of ethylene formation. Ga-Al₂O₃ (1323c) showed high catalytic activity and stability. XRD analysis revealed only Ga-Al₂O₃ (1323c) contained θ -Al₂O₃ structure while the other catalysts contained α -Al₂O₃ structure. From the results of TEM-EDX, Ga was highly dispersed on Ga-Al₂O₃ (1323c) than Ga-Al₂O₃ (1573pc+1323c). The experimental and theoretical XANES spectra revealed that Al₂O₃-Ga₂O₃ solid solution with tetrahedral Ga species existed on Ga-Al₂O₃ (1323c). Therefore, Ga-Al₂O₃ (1323c) showed high catalytic performance thanks to the presence of highly dispersed and tetrahedral coordination Ga species.

References

- 1. J. J. Siirola, AlChE J., 60, 810 (2014).
- 2. T. Ren, M. Patel, K. Blok, Energy, 31, 425 (2006).
- 3. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Krystallogr., 220, 567 (2005).
- H. Saito, S. Maeda, H. Seki, S. Manabe, Y. Miyamoto, S. Ogo, K. Hashimoto, Y. Sekine, J. Jpn. Petrol. Inst., 60(5) 203-210, (2017).
- 5. M. Chen, J. Xu, F. Su, Y. Liu, Y. Cao, H. He, K. Fan, J. Catal., 256(10) 293 (2008).