Oxidative Dehydrogenation of Ethane with CO₂ over CrO_x Catalysts Supported on Al₂O₃ modified by ZrO₂ and/or CeO₂

Tatiana Bugrova,^{a,*} V. Dutov,^a G. Mamontov,^a V. Cortés Corberán^b

^a Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia

^b Institute of Catalysis and Petroleumchemistry, CSIC, 2 Marie Curie Str., Madrid, 28049, Spain

*Corresponding author: bugrova.tatiana@gmail.com

Abstract: A series of Cr-containing catalysts (with Cr content corresponding to one theoretical monolayer) supported on Al₂O₃, ZrO₂/Al₂O₃, CeO₂/Al₂O₃ and Ce_xZr_(1-x)O₂/Al₂O₃ was prepared using the impregnation techniques. The catalysts are characterized by the low-temperature N₂ sorption, XRD, TPR, UV-vis spectroscopy and tested in oxidative dehydrogenation of ethane using CO₂ as an oxidant. The results of physical-chemical characterization show that chromium is located on the support surface in amorphous Cr(VI) state. The addition of ZrO₂ and/or CeO₂ to the alumina support leads to increased activity in both the direct and the oxidative dehydrogenation.

Keywords: oxidative dehydrogenation, ethane, carbon dioxide as an oxidant, chromia

1. Introduction

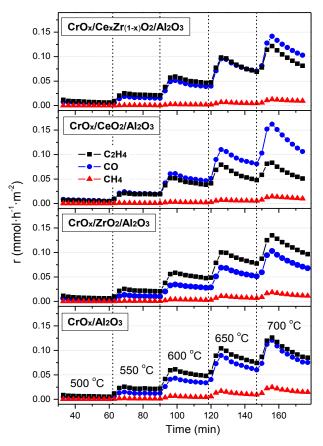
Ethylene, propylene and isobutylene are important building blocks in organic and polymeric synthesis in chemical and petrochemical industry. A growing demand in olefins requires new technologies in addition to traditional steam and catalytic cracking methods of olefin production. Catalytic dehydrogenation of alkanes is one of the most promising ways to obtain olefins among the new alternative routes due to high purity of the produced olefin. However, thermodynamic limitations make it difficult to carry out the direct dehydrogenation of ethane with high yield and selectivity towards ethylene. To avoid such limitations and shift the equilibrium towards the formation of target products, the oxidative dehydrogenation (ODH) of ethane is proposed by several scientific groups^{1,2}. Oxygen or carbon dioxide are used as oxidants. The prospects of using CO_2 as a mild oxidant are caused by the absence of deep oxidation, high selectivity to target olefin and utilization of CO_2 as a resource.

The reaction pathway in ODH using CO₂ is known to depend strongly on the support nature². According to our previous results³, Cr-containing catalysts supported on γ -Al₂O₃ and ZrO₂ showed the highest rates of C₂H₄ formation (mmol·h⁻¹·g⁻¹) via ODH-CO₂ of ethane in comparison with those over CrO_x/CeO₂ and CrO_x/Ce_xZr_{1-x}O₂ samples. Taking into account the range of products and their stoichiometry⁴, the following reactions set was proposed:

<u>selective ODH</u> : $C_2H_6 + CO_2 \leftrightarrow C_2H_4 + CO + H_2O$	<u>water-gas shift reaction (RWGS)</u> : $CO_2 + H_2 \leftrightarrow CO + H_2O$
<u>direct dehydrogenation</u> : $C_2H_6 \leftrightarrow C_2H_4 + H_2$	<u>cracking</u> : $C_2H_6 + H_2 \leftrightarrow 2CH_4$
<u>non-selective reaction</u> : $C_2H_6 + 5CO_2 \leftrightarrow 7CO + 3H_2O$	<u>dry reforming</u> : $C_2H_6 + 2CO_2 \leftrightarrow 4CO + 3H_2$

However, for CrO_x/Al_2O_3 catalyst the process consisted of two main reactions: direct dehydrogenation and RWGS, while for CrO_x/ZrO_2 sample ethylene was mainly formed through selective ODH. CrO_x/CeO_2 and $CrO_x/Ce_xZr_{1-x}O_2$ catalysts were characterized by lower ethylene formation rate due to high contribution of non-selective reactions of ethane transformation along with selective ODH. Thus, the combination of support properties can be used to design effective catalysts for ethane ODH with CO_2 .

The purpose of the present work is to study the effect of ZrO_2 and/or CeO_2 addition on the state of the active component in CrO_x/Al_2O_3 catalysts and its activity in ODH-CO₂ of ethane.


2. Experimental

Initial γ -Al₂O₃ support was obtained by thermal decomposition of AlO(OH). ZrO₂ and/or CeO₂ modified γ -Al₂O₃ supports were prepared by incipient wetness impregnation technique using water solutions of ZrO(NO₃)₂·2H₂O and/or Ce(NO₃)₃·6H₂O stabilized by citric acid with ZrO₂ and/or CeO₂ contents of 2.5 at_{Zr(Ce)}/nm². The supports were dried at 80 °C overnight and calcined at 600 °C for 4 h. Cr-containing

catalysts with Cr loading corresponding to a monolayer (5 at_{Cr}/m^2) were prepared by incipient wetness impregnation of γ -Al₂O₃, ZrO₂/Al₂O₃, CeO₂/Al₂O₃ and Ce_xZr_(1-x)O₂/Al₂O₃ using aqueous solution of H₂CrO₄. The catalysts were dried at room temperature for 12 h and calcined at 600 °C for 4 h. The supports and catalysts were characterized by low-temperature N₂ sorption, XRD, TPR, UV-vis spectroscopy and tested in a fixed-bed reactor in oxidative dehydrogenation of ethane with CO₂ between 500 and 700 °C in consecutive incremental steps of 50°C.

3. Results and discussion

The study of the porous structure showed that all samples were mesoporous and the specific surface areas varied in the ranges of 146-201 and 132-159 m²/g for supports and catalysts, respectively. The absence of reflexes of Cr-containing phases in XRD patterns for all catalysts indicates highly dispersed state of CrO_x on the surface of the supports. However, the reflexes of cubic phases of ceria and mixed cerium–zirconium oxides were found for catalysts modified by CeO_2 and $Ce_xZr_{1-x}O_2$. The DRS results indicated formation of Cr^{VI} state, the adsorption bands of Cr^{III} were not observed. It was shown by TPR-H₂ that the addition of ZrO_2 and/or CeO_2 influenced on the reducibility of Cr^{VI} .

Figure 1. Specific rates of formation of ethylene, methane and CO in ODH-CO₂ of ethane over Cr-containing catalysts.

formed by selective ODH-CO₂ reaction, while non-selective and/or dry reforming reactions take place on $CrO_x/CeO_2/Al_2O_3$ catalyst as shown by the higher CO formation rate. These changes in the main reactions can be ascribed to the differences in the chromium reducibility caused by its interaction with the support.

References

- 1. F. Cavani, N. Ballarini, A. Cericola, Catal. Today. 127 (2007) 113.
- 2. M.A. Atanga, F. Rezaei, A. Jawad, M. Fitch, A.A. Rownaghi, Appl. Catal., B: Environmental. 220 (2018) 429.
- 3. T. Bugrova, V. Cortés Corberán, G. Mamontov, Abstracts 8th World Congress on Oxidation Catalysis, Krakow, 2017, p.109.
- 4. R.X. Valenzuela, G. Bueno, V. Cortés Corberán, Y. Xu, C. Chen, Catal. Today. 61 (2000) 43.

The specific formation rates of C₂H₄, CO and CH₄ during the ODH-CO₂ for all catalysts are shown in Figure 1. Modification of the support of CrO_x/Al₂O₃ catalyst leads to changing of C₂H₄/CO ratio and decreasing of amount of byproducts (CH₄ and coke). The CrO_x/ZrO₂/Al₂O₃ catalyst showed the highest activity in ODH-CO₂ of ethane. Addition of ZrO₂ caused the increase of ethylene formation rate and the decrease of that of CO as compared to unmodified CrO_x/Al_2O_3 . The highest formation rate of CO and the lowest one of C₂H₄ are observed for CeO₂-modified catalyst. The modification by $Ce_xZr_{(1-x)}O_2$ did not lead to changing of ethylene formation rate. The addition of ZrO₂ and/or CeO₂ also leads to decrease of coke deposition on the catalyst surface.

4. Conclusions

All the studied catalysts mainly contain chromium in the Cr^{VI} state. The direct DH of ethane and RWGS is the main route over CrO_x/Al_2O_3 , with cracking and coke formation as side reactions. Addition of ZrO_2 and/or CeO_2 to CrO_x/Al_2O_3 catalyst results in selective ODH. For $CrO_x/ZrO_2/Al_2O_3$ catalyst, ethylene is additionally