Highly Diastereoselective Synthesis of a Novel Functionalized Benzocyclotrimer

${ }^{\text {a }}$ Department of Chemistry, Ataturk University, Faculty of Sciences, Erzurum, Turkey
${ }^{\mathrm{b}}$ Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Venezia, Italy
*Corresponding author: +90(442)2314109, adastan@atauni.edu.tr

Abstract

The high yielding synthesis of a novel benzocyclotrimer is herein presented. The syn-diastereomer is obtained as major product, presumably in virtue of the presence of oxa-bridge of the bicylic components. The three oxa-bridges can be used for further functionalization, as well as the six bromine atoms of the three aromatic rings, as demonstrated in the aromatization of the a mixture of anti-6 and syn-6 (3:7) leading to trinaphthylene 7.

Keywords: Cyclotrimerization, copper, cup-shaped molecules

1. Introduction

Benzocyclotrimers ${ }^{1}$ are rigid molecules characterized by one or two cavities, which have been successfully employed in supramolecular chemistry. ${ }^{2}$ amongst these, benzocyclotrimers bearing aromatic rings are characterized by large stiff cavities. The cavities are particularly deep and suitable for supramolecular applications in the case of the more symmetrical syn-diastereomer, which is generally obtained in lower amounts. In this report we describe the highly diastereoselective synthesis of the benzocyclotrimer syn-6, displaying one rigid and functionalized hemi-cavity in the bottom of the structure, concomitantly with three relatively reactive oxa-bridges (Figure 1). The reactivity of these moieties can be conveniently used for further functionalization of the less valuable diastereomer anti-6, which furnished the more symmetrical trinaphtylene 7 (Figure 1).

2. Experimental

Cyclotrimerization of the vinylstannane (5) and Synthesis of syn- and anti-7,8,17,18,27,28-hexabromo-31,32,33-trioxadecacyclo[22.6.1.1 $\left.1^{4,11} \cdot 1^{14,21} \cdot 0^{2,23} \cdot 0^{3,12} \cdot 0^{5,10} \cdot 0^{13,22} \cdot 0^{15,20} \cdot 0^{25,30}\right]$ tritriaconta-$2,5,7,9,12,15,17,19,22,25,27,29-d o d e c a e n e ~(s y n-6)$ and (anti-6)

In a flame dried $50-\mathrm{ml}$ two-necked round-bottomed flask fitted with a nitrogen inlet, copper(I) 2thiophenecarboxylate (CuTC) ($0.13 \mathrm{~g}, 0.69 \mathrm{mmol}$) was introduced, purging with nitrogen and capping with a rubber septum. The reactor was cooled to -20° and consecutively dry NMP (15 ml) and bromostannyl-olefin $5(0.25 \mathrm{~g}, 0.46 \mathrm{mmol})$ were added via syringe. The reaction evolution was monitored by ${ }^{1} \mathrm{H}$-NMR spectroscopy. After 30 min , an aqueous $10 \% \mathrm{NH}_{3}$ solution (20 ml) was added and the mixture was stirred until the brown solid disappeared. The mixture was extracted with diethyl ether $(3 \times 20 \mathrm{ml})$ and the combined ethereal extracts were dried over MgSO_{4}. Volatile materials were removed in vacuo, and the residue was purified by column chromatography on neutral aluminum oxide with EtOAc/n-hexane (3:7) as eluent and cyclotrimers syn-6 and anti-6-was obtained.

3. Results and discussion

The starting material for the synthesis of the benzocyclotrimers syn-6 and anti-6 is vic-bromostannane $\mathbf{5}$, which obtained from commercially available $1,2,4,5$-tetrabromobenzene $\mathbf{1}$. The key reagent $\mathbf{5}$ for the cyclotrimerization is obtained either by lithium-de-protonation of halide $\mathbf{3}$ with lithium diisopropylamide (LDA), or by lithium-de-bromination of the dibromide $\mathbf{4}$ with n-butyl lithium, followed in both cases by trans-metalation with trimethyltin chloride, furnishing the desired stannane $\mathbf{5}$ in 96% yields in both cases. The high chemo-selectivity of the lithium-de-bromination observed in the second approach is surprisingly high: indeed, the bromine atoms of the aromatic ring resulted completely unaffected by the metalating agent.

In order to accomplish the cyclotrimerization, the vic-bromostannane $\mathbf{5}$ is treated with copper(I) 2thiophenecarboxylate (CuTC) in dry NMP at low temperature. The two isomeric benzocyclotrimers are obtained in a highly favourable 7:3 syn to anti ratio and in a very good isolated yield (92\%).

The cyclotrimers syn-6 and anti-6 are a potential source of polyaromatic rings. When syn-6 and anti-6 is treated with titanium(III), generated in situ from TiCl_{4}, lithium aluminumhydride (LAH) and triethylamine (TEA) in refluxing THF, a quantitative yield of trinaphthylene 7 is obtained.

Figure 1.
a) i) n - BuLi ; i i) furan in toluene, -78° to r.t.) b) i) DBTCE , in CCl_{4}, ho ; ii) t - BuOK in THF, reflux. c) i) Br_{2} in CCl_{4}, reflux. ; ii) t BuOK in THF, reflux d) i LDA; ii) $\mathrm{Me}_{3} \mathrm{SnCl}$ in THF, -78° to r.t. e) i) n - BuLi ; i i) $\mathrm{Me}_{3} \mathrm{SnCl}$ in THF, -78° to r.t. f) CuTC in NMP, $\left.20^{\circ} g\right) \mathrm{TiCl}_{4}$, LAH, TEA in THF, reflux.

4. Conclusions

In conclusion, a straightforward and high yielding synthesis of a new benzocyclotrimer was studied. The cyclotrimerization reaction afforded the two possible diastereomers syn to anti in a very favourable 7:3 ratio. The more valuable syn-diastereomer will be considered for supramolecular applications. In the other hand, anti and syn diastereomers can be conveniently employed for the preparation of polyaromatic structures.

References

1. a) K. Hermann, M. Nakhla, J. Gallucci, J., E. Dalkilic, A. Dastan Angew. Chem. Int. Ed. Eng., 52, (2013), 11313. b) F. Fabris, C. Zonta, G. Borsato, O. De Lucchi, Acc. Chem. Res. 44, (2011), 416.
2. a) A. Daştan, E. Uzundumlu, M. Balc1, F. Fabris, O. De Lucchi, Eur. J. Org. Chem. (2004), 183. b) S. Rieth, B.Y. Wang, X. Bao, J. D. Badjic, Org. Lett. 11, (2009), 2495; c) B.Y. Wang, X. Bao, Z. Yan, V. Maslak, C. M. Hadad, J. D. Badjic, J. Am. Chem. Soc. 130 (2008) 15127.
