Role of perimeter interfaces between WO₃ monolayer domain and Al₂O₃ in hydrogenolysis of glycerol by Pt/WO₃/Al₂O₃ catalysts

Takeshi Aihara,^a Hiroki Miura,^{a,b,c} Tetsuya Shishido^{a,b,c,*}

^aDepartment of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan ^bResearch Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan ^cElements Strategy Initiative for Catalysts & Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan *Corresponding author: +81-42-677-2850, shishido-tetsuya@tmu.ac.jp

Abstract: The role of perimeter interfaces between WO₃ domain and Al₂O₃ in glycerol hydrogenolysis by Pt/WO₃/Al₂O₃ was investigated. The WO₃ loading significantly affected the 1,3-propanediol yield. WO₃ was loaded as two-dimensional monolayer domains below 20 wt.% and these domains covered most of the Al₂O₃ surface at 20 wt.%. We estimated the number of W species at the perimeter interfaces between WO₃ monolayer and Al₂O₃ from H₂-TPR profiles. The estimated value was positively correlated with the 1,3-propanediol yield, suggesting that the W-(OH)-Al sites at the perimeter interfaces between WO₃ monolayer and Al₂O₃ have an important role in hydrogenolysis of glycerol to 1,3-propanediol.

Keywords: Hydrogenolysis of glycerol, Tungsten oxide, Perimeter interface

1. Introduction

The hydrogenolysis of glycerol (Gly) to form 1,3- and 1,2-propanediol (PDO) has attracted a great deal of attention. Although the combination of Pt, WO₃ and alumina-based supports has been one of the most successful systems for Gly hydrogenolysis into 1,3-PDO, the role and structure of WO₃ and alumina-based supports in this catalyst for the selective hydrogenolysis of 1,3-PDO are subjects of controversy. In this study, to reveal the roles of WO₃ in hydrogenolysis of Gly, we investigated the relationship between the number of W species at the perimeter interfaces between WO₃ monolayer domain and Al₂O₃ of Pt/WO₃/Al₂O₃ catalysts with various WO₃ loadings and their catalysis in hydrogenolysis of Gly.

2. Experimental

A series of WO₃/Al₂O₃ catalysts was prepared by impregnation of γ -Al₂O₃ (JRC-ALO-8) with an aqueous solution of ammonium tungsten para pentahydrate ((NH₄)₁₀W₁₂O₄₂ 5H₂O), dried at 353 K for 6 h, and then calcined at 1123 K for 3 h in a flow of dry air.¹ Pt/WO₃/Al₂O₃ catalysts (Pt loading: 1 wt.%) were also prepared by impregnating WO₃/Al₂O₃ with an aqueous solution of H₂PtCl₆. After the impregnation procedure and drying at 353 K for 6 h, the prepared catalysts were calcined at 573K for 3 h in air. The hydrogenolysis of glycerol was conducted in a Teflon vessel placed in a stainless steel autoclave with magnetic stirring pressurized with 5 MPa of hydrogen. The products were analyzed by FID-GC and TCD-GC. Structural characterization was carried out using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The temperature-programmed reduction (H₂-TPR) profiles of the catalysts recorded using an Okura BP-2 instrument were used for determination of H₂ consumption.

3. Results and discussion

Figure 1 shows the effect of WO₃ loading on the activity of Pt/WO₃/Al₂O₃ in the hydrogenolysis of Gly. The WO₃ loading significantly affected 1,3-PDO yield. Structural characterization by XRD and XPS revealed that two-dimensional monolayer WO₃ domains (WO₆ units) were loaded on Al₂O₃ surface up to 20 wt.% loadings². The surface coverage of Al₂O₃ with WO₃ monolayer was estimated from the unit size of WO₆ (0.22 nm²)³ and the surface area. The surface coverage of Pt/WO₃/Al₂O₃ with 6 wt.% WO₃ loading, which showed

the highest yield of 1,3-PDO, was ca. 25%. This suggests that the perimeter interfaces between WO_3 monolayer and Al_2O_3 has important role in hydrogenolysis of Gly to 1,3-PDO.

To estimate the number of W species at the perimeter interfaces, H₂-TPR profiles were measured and the amount of H₂ consumption was calculated. The ratio of H₂ consumption below 673 K to the amount of supported tungsten (H₂/W ratio) was much lower than 1 (Fig. 2), indicating that a part of supported WO₃ was reduced. We assumed that H₂ consumption is due to the reduction of W species at the perimeter interfaces between WO₃ monolayer domain and Al₂O₃. Figure 3 shows the effect of H₂ consumption was observed. It is implied that the perimeter interfaces between WO₃

Figure 1. Effect of WO₃ loading on hydrogenolysis over Pt/WO₃/Al₂O₃. Conditions: 3 mmol Glycerol, 9 mL H₂O, P_{H2} =5 MPa, T = 453 K, t = 15 h.

domain and Al₂O₃ have an important role and the W-(OH)-Al sites at the perimeter interfaces are active sites in hydrogenolysis of glycerol to 1,3-PDO.

(e) 6, (f) 8, (g) 10, (h) 15, (i) 20 wt.%.

Figure 3. Effect of H_2 consumption on hydrogenolysis over $Pt/WO_3/Al_2O_3$.

4. Conclusions

The effect of WO₃ loading on the activity of Pt/WO₃/Al₂O₃ in Gly hydrogenolysis was investigated. The coverage of Al₂O₃ with the WO₃ monolayer strongly affected the yield of 1,3-PDO. H₂ consumption was estimated from H₂-TPR profiles and the estimated H₂/W ratio was much less than 1, suggesting that a part of W species supported on Al₂O₃ was reduced. We assumed that H₂ consumption was correlated with the number of W species at the perimeter interfaces between WO₃ monolayer and Al₂O₃. A positive correlation between H₂ consumption and 1,3-PDO yield was observed. Thus, we conclude that W-(OH)-Al sites at the perimeter interfaces between two-dimensional monolayer WO₃ domain and Al₂O₃ have an important role in selective hydrogenolysis of Gly to 1,3-PDO.

References

- 1. T. Kitano, T. Hayashi, T. Uesaka, T. Shishido, K. Teramura, T. Tanaka, ChemCatChem 2014, 6, 2011.
- 2. T Aihara, H Kobayashi, S Feng, H Miura, T Shishido, Chem. Lett. 2017, 46, 1497.
- C.Pfaff, M.J.Perez Zurita, C.Scott, P.Patino, M.R.Goldwasser, J.Goldwasser, F.M.Mulcahy, M.Houalla, D.M.Hercules, *Catal. Lett.*, 1997, 49, 13.