Selective formate reduction to formaldehyde with aldehyde dehydrogenase and single-electron reduced methylviologen

Tomoya Ishibashi^{a*}, Shusaku Ikeyama^b, Yutaka Amao^{a,b,c}

^aGraduate School of Science, Osaka City University, Osaka, 558-8585, Japan
^bThe Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585, Japan
^cResearch Center for Artificial Photosynthesis (ReCAP), Osaka City University, Osaka, 558-8585, Japan
^{*}Corresponding author: +08-6605-3619, <u>t-1484@sci.osaka-cu.ac.jp</u>

Abstract: CO_2 is converted to methanol via formate and formaldehyde with single-electron reduced methylviologen (MV⁺) as an artificial co-enzyme, formate (FDH), aldehyde (AldDH) and alcohol dehydrogenases (ADH). The enzyme kinetic parameters for FDH catalyzing CO_2 conversion to formate with MV⁺ or ADH catalyzing formaldehyde conversion to methanol with MV⁺ have been clarified. However, the kinetic parameters for AldDH catalyzing formate conversion to formaldehyde with MV⁺ have not been clarified. In this study, the parameters for formate reduction with MV⁺ and AldDH were determined by enzyme kinetic analysis.

Keywords: Kinetic analysis, Artificial co-enzyme, Aldehyde dehydrogenase.

1. Introduction

Currently, global warming due to an increase CO_2 and exhaustion of fossil fuels are problems. As a method to solve these problems, CO_2 reduction system with visible light has been proposed. CO_2 is reduced to methanol via formate and formaldehyde with formate (FDH), aldehyde (AldDH) and alcohol dehydrogenases (ADH) in the presence of single-election reduced methylviologen (MV^{++}) ¹. The enzyme kinetic parameters for CO_2 conversion to formate with MV^{++} and FDH or formaldehyde reduction to methanol with MV^{++} and ADH have been clarified ^{1,2}. However, the kinetic parameters for

Figure 1. CO₂ - methanol conversion with three dehydrogenases (ADH, AldDH, FDH) and reduced methylviologen

formate reduction to formaldehyde conversion with MV^{+} and AldDH have not been revealed. In this study, enzyme kinetic analysis was carried out to elucidate the parameters for formate reduction with MV^{+} and AldDH to compare with those of FDH, ADH. In addition, whether oxidized methylviologen (MV^{2+}) acts as an artificial co-enzyme for AldDH in formaldehyde oxidation to formate conversion was investigated.

2. Experimental

In the formaldehyde oxidation with AldDH and MV^{2+} , MV^{2+} (100~500 µM), formaldehyde (2.0 mM) and AldDH (1.3 µM) in 1.0 mM sodium pyrophosphate buffer (pH = 7.4) was reacted for 1 min at 30.5 °C in argon atmosphere. The progress of the formaldehyde oxidation was measured from the absorbance of MV^{++} generated and the molar absorption coefficient ($\varepsilon_{605} = 12000 \text{ M}^{-1} \text{ cm}^{-1}$). In the formate reduction to aldehyde with AldDH and MV^{++} , MV^{++} (25~500 µM), sodium formate (2.0 mM) and AldDH (1.3 µM) in 1.0 mM sodium pyrophosphate buffer (pH = 7.4) was reacted for 1 min at 30.5 °C in argon atmosphere. Sodium dithionite was used as a reducing agent for MV^{2+} . The amount of formate consumption was measured by ion chromatography. The amount of formaldehyde production was estimated as the amount of formate consumption.

3. Results & Discussion

Figure 2 shows the relationship between initial rate for formate production and the concentration of MV^{2+} or NAD^+ as a reference in formaldehyde oxidation with AldDH. MV^{++} was not produced by progressing of formaldehyde oxidation, indicating that MV^{2+} did not act as a co-enzyme for AldDH. Figure 3 shows the relationship between initial rate for formaldehyde production and the concentration of MV^{++} or NADH. Since the initial rate formaldehyde production was increased with increasing the concentration of MV^{++} and then reached a constant value, showing this enzyme reaction was coincide with Michaelis - Menten equation. MV^{++} acted as an artificial co-enzyme for AldDH in the formate reduction.

Figure 2. The relationship between the concentrations of $MV^{2+}(\bullet)$, $NAD^+(\bullet)$ and initial rate for formate

Figure 3. The relationship between the concentrations of $MV^{+}(\bullet)$, NADH (\bullet) and initial rate for formaldehyde

4. Conclusions

The kinetic parameters for formate reduction to formaldehyde with MV⁺⁺ and AldDH calculated by Lineweaver - Burk equation. Table 1 shows the kinetic parameters for FDH, AldDH and ADH with MV⁺⁺. Comparing with the Michaelis constant K_m which is the ease of binding with FDH, AldDH and ADH, the K_m of AldDH is the smallest in other dehydrogenases. It indicated the affinity between MV⁺⁺ and AldDH is stronger than those of FDH and ADH. Furthermore, the formate reduction catalytic efficiency value k_{cat}/K_m of AldDH was the highest in other dehydrogenases. Based on these parameters, we will construct CO₂ - methanol conversion more efficiency by changing the enzyme concentration ratio of FDH, AldDH and ADH from 1:1:1 to 2:1:3.

	V _{max} (µM ∙ min⁻¹)	<i>K</i> _m (μM)	k _{cat} (min ⁻¹)	$k_{\text{cat}}/K_{\text{m}}(\text{M}^{-1}\cdot \text{min}^{-1})$
FDH	17.8	212	1.90	9,000
AldDH	34.1	87.5	25.7	293,000
ADH	7.13	311	3.57	11,400

Table 1. The enzyme kinetic parameters for dehydrogenases with reduced methylviologen ^{2,3}

 V_{max} : Maximum velocity, K_{m} : Michaelis constant, k_{cat} : Turnover frequency, $k_{\text{cat}}/K_{\text{m}}$: Catalytic efficiency

References

- 1. Y. Amao, T. Watanabe, Chem. Lett., 33(12), 1544-1545 (2004)
- 2. Y. Amao, S. Ikeyama, Chem. Lett., 44(9), 1182-1184 (2015)
- 3. Y. Amao, R. Kataoka, Catal. Today, 307, 243(2018)