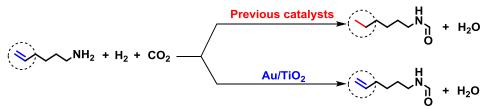
# Development of a Titanium Dioxide-Supported Gold Nanoparticle Catalyst for the Selective *N*-Formylation of Functionalized Amines Using Carbon Dioxide

## <u>Shu Fujita,</u><sup>a</sup> Tatako mitsudome,<sup>a</sup> Zen Maeno,<sup>a</sup> Tomoo Mizugaki,<sup>a</sup> Koichiro Jitsukawa,<sup>a,\*</sup> Kiyotomi Kaneda<sup>a,b</sup>

<sup>a</sup>Department of Materials Engineering Science Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan

<sup>b</sup>Research Center for Solar Energy Chemistry, Osaka University, Osaka, 560-8531, Japan


\* Koichiro Jitsukawa: Fax +81-06-6850-6261, E-mail jitkk@cheng.es.osaka-u.ac.jp

**Abstract:** A titanium dioxide-supported gold nanoparticle catalyst efficiently promoted the selective *N*-formylation of various amines using  $CO_2$  as a carbonyl source under the pressured hydrogen conditions. The *N*-formylation of amines proceeded in high selectivity with reducible functional groups, such as olefin, carbonyl, cyano, halogen, amide and carbamate moieties, retaining intact. Furthermore, the catalyst after the reaction was easily recovered by filtration and reused without any loss of catalytic activity or selectivity. **Keywords:** Gold nanoparticle, Formylation, Heterogeneous catalyst.

#### 1. Introduction

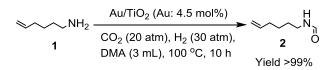
Formamides are important intermediates for the production of pharmaceuticals, insecticidal agents, and fine chemicals. The formamides are currently synthesized by *N*-formylation of amines using toxic carbon monoxide as a carbonyl source or using hydrosilanes as reducing reagents and  $CO_2$  as a carbonyl source with low atom efficiency. Recently, the green catalytic *N*-formylation of amines using  $CO_2$  and molecular hydrogen (H<sub>2</sub>) is attracting much attention. In this reaction, nontoxic  $CO_2$  is used as a carbonyl source and water is produced as the sole byproduct. However, this method has crucial problems. The *N*-formylation of amines generally requires high pressure of H<sub>2</sub> at high temperature, which cause the hydrogenation of reducible functional groups, such as olefin, carbonyl, cyano, halogen, amide and carbamate moieties. Therefore, the selective *N*-formylation of amines with reducible functional groups is a challenging issue.

Herein, we report that the unique catalytic activity of titanium dioxide-supported gold nanoparticle catalyst (Au/TiO<sub>2</sub>) for *N*-formylation of functionalized amines using CO<sub>2</sub> as a carbonyl source under H<sub>2</sub> atmosphere.<sup>1</sup> For example, Au/TiO<sub>2</sub> enables the selective *N*-formylation of 5-hexene-1-amine with retaining the carbon-carbon double bond while previous catalysts cause the hydrogenation (Scheme 1). The present Au/TiO<sub>2</sub> catalytic system is applicable to the *N*-formylation of various amines with other reducible functional groups, giving the corresponding products in excellent yields.



Scheme 1. Au/TiO<sub>2</sub>-catalyzed selective N-formylation of 5-hexene-1-amine using  $CO_2$  and  $H_2$ 

#### 2. Experimental


Au/TiO<sub>2</sub> was synthesized as follows. TiO<sub>2</sub> was treated with aqueous HAuCl<sub>4</sub> solution at room temperature in the presence of aqueous NH<sub>3</sub>. The resulting slurry was filtered, washed with deionized water and dried at room temperature in *vacuo* to afford TiO<sub>2</sub>-supported Au<sup>III</sup> species as a light yellow powder. Treatment of this powder with KBH<sub>4</sub> yielded Au/TiO<sub>2</sub> as a purple powder. A typical reaction procedure for *N*-formylation is as follows. Au/TiO<sub>2</sub> was placed in a stainless steel autoclave (with a Teflon inner cylinder) followed by addition of amine and solvent. The reaction mixture was stirred under the pressured  $CO_2$  with  $H_2$ . After the reaction, Au/TiO<sub>2</sub> was removed by filtered and the yield was determined by GC analysis.

#### 3. Results and discussion

Au/TiO<sub>2</sub> showed high activity for the *N*-formylation of 5-hexen-1-amine (1) to afford the desired product (2) with retaining the olefinic moiety during the reaction under 20 atm of CO<sub>2</sub> and 30 atm of H<sub>2</sub> (Scheme 2). In sharp contrast, the TiO<sub>2</sub>-supported other metal nanoparticles, such as Pd, Ru, Pt, Rh, Ag and Cu, did not afford 2 at all and the olefinic moiety of 1 was hydrogenated. Moreover, Au nanoparticles on the other supports, such as ZnO, CeO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> and Nb<sub>2</sub>O<sub>5</sub>, catalyst were inactive for this reaction. From the above results, a combination of Au nanoparticles and TiO<sub>2</sub> specifically enable selective *N*-formylation of 1.

This Au/TiO<sub>2</sub> catalytic system is applicable to other amines with a wide range of reducible functional groups (Table). A series of reducible functional groups, such as olefin (entries 1 and 3), carbonyl (entry 4), cyano (entry 5), halogen (entries 6 and 7), amide (entry 8), and carbamate (entry 9) moieties, were completely retained during the *N*-formylation. In addition, the corresponding products were obtained in excellent yields without any by-products. From these results, Au/TiO<sub>2</sub> is completely inactive for diverse functionalities.

 $Au/TiO_2$  is easily removed by filtration from the reaction mixture after the reaction. Inductively coupled plasma atomic emission spectra (ICP-AES) analysis of the resulting filtrate showed the



Scheme 2. Selective N-formylation of 1 to 2 using Au/TiO\_2 with CO\_2 and  $H_2$ 

Table. N-formylation of various amines catalyzed by Au/TiO2<sup>a</sup>

| R <sub>1</sub>      | $R_2^{H} + CO_2 + R_2^{H}$ | H <sub>2</sub> Au/TiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | → <sub>R1</sub> | F <sup>0</sup><br>N, +<br>R₂ + | H <sub>2</sub> O              |
|---------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------|-------------------------------|
| Entry               | Substrate                  | Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Temp. [ºC]      | Time [h]                       | Yield [%] <sup>b</sup>        |
| 1<br>2 <sup>d</sup> | NH <sub>2</sub>            | Solution HN SOlut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100<br>100      | 10<br>10                       | >99 (91 <sup>c</sup> )<br>>99 |
| 3                   | NH <sub>2</sub>            | © N <sup>™</sup> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100             | 10                             | >99                           |
| 4                   |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 140             | 10                             | 98 <sup>c</sup>               |
| 5                   |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 140<br>N        | 10                             | >99                           |
| 6                   | F NH <sub>2</sub>          | F NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120             | 5                              | >99 (96 <sup>c</sup> )        |
| 7                   | CI NH2                     | CI H CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120             | 5                              | >99 (94 <sup>c</sup> )        |
| 8                   | °↓<br>∧_NH                 | ° <sup>⊥</sup> N∕N ∞°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140             | 5                              | >99 (98 <sup>c</sup> )        |
| 9                   |                            | $\rtimes_{O^{\mathcal{A}}} {\overset{O}{\to}} {\overset{O}{\to} } {\overset{O}{\to}} {\overset{O}{\to} } {\overset{O}{\to}} {\overset{O}{\to} } {\overset{O}{\to}  {\overset{O}{\to} } {\overset{O}{\to} $ | 140             | 5                              | >99                           |
|                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                                |                               |

<sup>a</sup>Reaction conditions: Au/TiO<sub>2</sub> (0.2 g, Au: 4.5 mol%), amine (0.5 mmol), DMA (3 mL), CO<sub>2</sub> (20 atm), H<sub>2</sub> (30 atm). <sup>b</sup>Determined by GC using internal standard technique. <sup>c</sup>Isolated yield. <sup>d</sup>5th reuse.

absence of Au species in the filtrate (detection limit of 0.1 ppm), proving no leaching of Au species during the reaction. The recovered Au/TiO<sub>2</sub> catalyst is reused without any loss of activity or selectivity for the *N*-formylation of **1** even after the 5th recycling experiments (Table, entry 2).

### 4. Conclusions

A highly selective *N*-formylation of functionalized amines using  $CO_2$  with  $H_2$  was achieved by the Au/TiO<sub>2</sub> catalyst. Au/TiO<sub>2</sub> efficiently promoted for the first time the selective *N*-formylation of various amines to corresponding formamides in excellent yields without hydrogenation of reducible functional groups. This catalyst was reusable without any loss of catalytic activity or selectivity.

#### Reference

1. T. Mitsudome, T. Urayama, S. Fujita, Z. Maeno, T. Mizugaki, K. Jitsukawa, K. Kaneda, ChemCatChem. 9 (2017) 3632.