Origins of high activity of Pd/CeO₂-based catalysts in methane combustion

<u>Vita A. Kondratenko</u>,^{a,*} Dominik Seeburg,^a Stefanie Kreft,^a Sebastian Wohlrab,^a Evgenii V. Kondratenko^a

^aLeibniz Institute for Catalysis at the University of Rostock (LIKAT), Albert-Einstein-Str. 29a, Rostock, 18059, Germany

*Corresponding author: +49(381)128151291, Vita.Kondratenko@catalysis.de

Abstract: In comparison with classically prepared Pd/CeO₂, such system embedded in porous glasses revealed higher activity for complete methane combustion. The origins of its superior performance were studied by means of steady-state experiments combined with transient tests using isotopic tracers and sophisticated catalyst characterization. In particular, the role of metallic Pd, PdO_x, and CeO₂ in this reaction was elucidated in detail. Formation of CO₂ was established to take place through a Mars-van Krevelen mechanism with participation of lattice oxygen of PdO_x and CeO₂. The reaction is initiated by CH₄ activation over metallic Pd yielding surface CH_x fragments, which are further oxidized to CO₂. **Keywords:** Methane, Oxidation, TAP.

1. Introduction

In the past decades, anthropogenic emissions of methane, a green-house gas with 25-times higher global warming potential than carbon dioxide [1], have significantly increased. Catalytic oxidation of CH_4 to CO_2 is a promising option for controlling such emissions. However, potential catalytic materials should guarantee a complete conversion of methane at temperatures as low as possible and demonstrate high onsteam stability. Catalysts on the basis of Pd and CeO₂ appear to be suitable candidates [2]. Recently, we have demonstrated that supporting of these components on porous glasses (PG) resulted in an active and stable catalyst in comparison with sole Pd/CeO₂ [3]. However, fundamental factors responsible for such improvements were not elucidated. To close this gap, the present study was focused on: i) mechanistic aspects of product formation, ii) the role of metallic Pd, PdO_x, and CeO₂ for activation of oxygen and methane. To this end, we combined steady-state tests and temporal analysis of products using isotopic tracers with catalyst characterization by means of complementary techniques.

2. Experimental

Pd/PG, CeO₂-PG, and Pd/CeO₂-PG were prepared using a porous glass (PG) with an average pore diameter of 151 nm as a support [3]. For comparative purposes, Pd/CeO₂ and CeO₂ without the glass were also synthesized. The catalysts were characterized by H₂-TPR, HAADF-STEM, and CO chemisorption. Steady-state ambient pressure tests were performed in a fixed-bed plug-flow quartz tubular reactor with a feed containing 1 vol% CH₄ in air [3]. Pulse experiments with ¹⁸O₂:CH₄:Ar=2:1:2, D₂:CH₄:Ar=1:1, or CH₄:Ar=1:1 mixtures were carried out in the TAP-2 reactor after catalyst treatment at ambient pressure in O₂:N₂=1:4 at 350 °C for 1 h, H₂:N₂=1:1 at 50 °C for 0.5 h, or in vacuum (10⁻⁵ Pa) at 500 °C.

3. Results and discussion

Carbon dioxide was the only carbon-containing product detected in steady-state tests of methane oxidation. The activity of different materials for CO_2 formation decreased in the order: Pd/CeO₂-PG, Pd/CeO₂, and Pd/PG. In order to understand which factors govern the different activity from a mechanistic point of view, pulse experiments with an ¹⁸O₂:CH₄:Ar mixture were performed between 250-350°C. ¹⁸O₂ was required for identifying the type of oxygen species (lattice oxygen vs. oxygen from the gas phase), which participate in product formation. The experiments have shown that among the tested catalysts only Pd/CeO₂-PG and Pd/PG were active towards methane oxidation. CeO₂ and CeO₂-PG were not active for methane combustion in the studied temperature range. Similar to the results of steady-state tests, CO₂ was

the only carbon-containing reaction product. However, the catalyst differed in the pathways of oxygen exploitation as concluded from the different distributions of labelled oxygen in this product. Pd/CeO₂-PG oxidized CH₄ mainly to $C^{16}O_2$ and marginally to $C^{16}O^{18}O$, i.e. oxygen species in carbon dioxide originated from the lattice of CeO₂ and/or PdO_x. The ability of latter to oxidize methane was proved in separate pulse experiments with a CH₄:Ar mixture. Contrarily to the Pd/CeO₂-PG, C¹⁸O₂, C¹⁸O¹⁶O, and C¹⁶O₂ were formed over Pd/PG with the main products containing oxygen from gas-phase ¹⁸O₂. Formation of C¹⁸O¹⁶O and $C^{16}O_2$ was ascribed to fast oxygen isotopic exchange between ${}^{18}O_2$ and $Pd^{16}O_x$. Importantly, the amount of CO₂ formed upon pulsing of an ¹⁸O₂:CH₄:Ar mixture significantly decreased after the catalysts were treated in H₂ at 50°C or in vacuum at 500°C. No definitive conclusion about the distribution of oxygen in carbon dioxide formed over the Pd/PG catalyst could be drawn due to tiny amounts of this product. The distribution of isotopically labelled oxygen atoms in carbon dioxide formed over reductively treated Pd/CeO2-PG was only slightly changed in favor of C¹⁶O¹⁸O in comparison to the catalyst treated in an O₂:N₂ mixture. Hence CH₄ oxidation by lattice oxygen of CeO₂ is significantly more effective than by adsorbed oxygen species formed from gas-phase oxygen. Summarizing the results of ¹⁸O₂:CH₄:Ar pulse experiments, it can be concluded that formation of carbon dioxide over Pd/CeO2-PG and Pd/PG occurs through a Mars-van Krevelen mechanism with participation of lattice oxygen of CeO₂ and/or PdO_x.

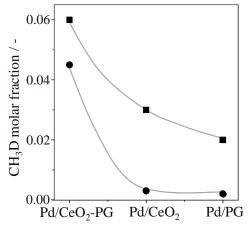


Figure 1. Molar fraction of CH_3D formed upon pulsing of a $D_2:CH_4:Ar = 1:1:1$ mixture over (\bullet) O_2 -treated and (\blacksquare) vacuum-treated Pd/CeO₂-PG, Pd/CeO₂, and Pd/PG at 350°C.

The role of Pd and PdO_x in CO₂ formation was studied by pulse experiments with a D₂:CH₄:Ar mixture. The main attention was paid to the formation of CH₃D, which characterizes the activity of the catalyst in breaking the CH bond in CH₄. Vacuum-treated (PdO_x was reduced to Pd) Pd/CeO₂-PG produced higher amount of this product as compared to Pd/PG (Figure 1). However, the amount of CH₃D formed over oxygen-treated catalysts (both Pd and PdO_x coexist) was even higher. Thus, we can suggest that oxygen species indirectly facilitates breaking the C-H bond in CH₄ over metallic Pd yielding surface CH_x species, which is further oxidized to CO₂.

4. Conclusions

 Pd/CeO_2 , and Pd/PG at 350°C. Transient isotopic studies of total methane oxidation over the Pd/CeO₂ system demonstrated that lattice oxygen species of CeO₂ and/or PdO_x participate actively in the formation of carbon dioxide. This species also indirectly promotes activation of CH₄ over Pd particles. Therefore, methane oxidation to carbon dioxide is initiated by CH₄ activation on Pd followed by total oxidation of so-formed surface CH_x fragments with participation of lattice oxygen of CeO₂ and/or PdO_x. Thus, further improvement in the performance of Pd/CeO₂-PG catalysts can be achieved by tuning of redox properties of PdO_x species to ensure the presence both of Pd and PdO_x under conditions of methane combustion.

References

- P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, R. Van Dorland, In Climate Change 2007, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Eds.): The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, USA, 2007, 212.
- M. Cargnello, J. J. D. Jaén, J. C. H. Garrido, K. Bakhmutsky, T. Montini, J. J. C. Gámez, R. J.Gorte, P. Fornasiero, Science 337 (2012) 713.
- M. Hoffmann, S. Kreft, G. Georgi, G. Fulda, M.-M. Pohl, D. Seeburg, C. Berger-Karin, E.V. Kondratenko, S. Wohlrab, Appl. Catal. B, 179 (2015) 313.