# Kinetic Study of Hydrodeoxygenation of Cresols over Ni<sub>3</sub>P and Ce-promoted Ni<sub>3</sub>P

# Wang Yao,<sup>a</sup> Yu Zhiquan,<sup>a</sup> Sun Zhichao,<sup>a</sup> Hao Jiao,<sup>a</sup> Meng Fanxing,<sup>a</sup> Wang Anjie<sup>a\*</sup>

<sup>a</sup> State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China \*Corresponding author: 86-411-84986121, ajwang@dlut.edu.cn

**Abstract:** Ce is a promising promoter for the unsupported Ni<sub>3</sub>P in the HDO of cresol. XRD and XPS results reveal that Ce species in Ce-Ni<sub>3</sub>P(0.3) ( $0.3 = n_{Ce}/n_{Ni}$ ) were mainly in CePO<sub>4</sub> form and both Ce<sup>4+</sup> and Ce<sup>3+</sup> coexisted on the surface of the catalysts. Less electron transferred from Ni to P atoms after introducing Ce, which resulted in the enhancement of metallicity of nickel atoms of Ce-Ni<sub>3</sub>P(0.3), leading to higher HDO activity. After introduction of Ce, the reaction rate constant increased but the activation energy decreased. **Keywords:** Cresol, Hydrodeoxygenation, Kinetic study.

### 1. Introduction

Bio-oils produced by pyrolysis or liquefaction of lignocellulosic biomass are promising alternative sources for the production of fuels, having a high oxygen content  $(45-50 \text{ wt.}\%)^1$ , which leads to undesired properties such as high viscosity, low thermal stability, low heating value and immiscibility with petroleum fractions. Mo- or W-based sulfide catalysts suffer from progressive deactivation during hydrodeoxygenation (HDO) of bio-oils, due to the loss of sulfur in the catalytic phase. As a result, it is necessary to explore non-sulfide catalysts to upgrade bio-oils. In our previous study, we found that Ni<sub>3</sub>P and Ce-Ni<sub>3</sub>P catalysts presented high activity in the HDO of phenols both in aqueous and oil phase. Hence, the kinetic study of HDO of cresok (including o-cresol, m-cresol and p-cresol) was explored, discussing the reaction pathway and rate-limiting step, in order to develop new catalytic system and design optimal reactor.

#### 2. Experimental

The catalysts were prepared from the oxide precursor by *in situ*  $H_2$  temperature programmed reduction (TPR) method<sup>2</sup>. The XRD patterns of the catalysts were measured on a Rigaku D/Max 2400 diffractometer with nickel-filtered Cu-K $\alpha$  radiation at 40 kV and 100 mA. X-ray photoelectron spectroscopy (XPS) spectra were obtained with a Multilab 2000 X-ray photoelectron spectrometer, using an Mg-K $\alpha$  source. Transmission electron microscopy (TEM) was measured on a Tecnai G2 F30 transmission microscope operated at 300 kV. The samples for TEM examination were prepared by depositing a drop of an ultrasonic treated ethanol suspension of the solid material onto a carbon-coated Cu grid. Prior to HDO reaction, the precursor was transformed into metal phosphide by *in situ*  $H_2$  TPR. Afterwards, the reactor was cooled to the reaction temperature, with the total pressure of 4 MPa  $H_2$  (ambient temperature).

#### 3. Results and discussion

As seen in Figure 1a, both samples showed a typical crystalline pattern of Ni<sub>3</sub>P. Also, for Ce-Ni<sub>3</sub>P(0.3) catalyst, the peaks at  $2\theta$ =20, 28.4, 31.4, and 41.6 ° were attributed to the (101), (111), (102), and (211) planes of CePO<sub>4</sub>. It was worth noting that after introduction of Ce, the Ni<sub>3</sub>P peaks became more broadened and less intense. TEM images of Ni<sub>3</sub>P and Ce-Ni<sub>3</sub>P(0.3) catalysts were shown in Figure 1b. Compared with the bulk Ni<sub>3</sub>P ( $D_c = 85.8$  nm) catalyst, Ce-Ni<sub>3</sub>P(0.3) ( $D_c = 18.7$  nm) had smaller and more uniform Ni<sub>3</sub>P particles, indicating that the introduction of Ce deceased the crystallite size of Ni<sub>3</sub>P (as seen in Figure 1d). The XPS spectra of the catalysts in the binding energy regions of Ni 2p and P 2p are illustrated in Figure 1c. The peaks at about 852.0 and 129.2 eV are related to the reduced Ni<sup>δ+</sup> (0<δ<2) and P<sup>δ-</sup> (0<δ<1), respectively. After introduction of Ce, the binding energy ascribed to Ni<sup>δ+</sup> decreased from 852.0 eV to 851.1 eV, while that of P<sup>δ-</sup> increased from 129.2 eV to 129.5 eV. They are evidence for less transfer of electron density from Ni to P atoms after introducing Ce, which corresponds to the enhancement of metallicity of nickel atoms of Ce-Ni<sub>3</sub>P(0.3). The sub-bands labeled u and v represent the 3d<sup>10</sup>4f<sup>0</sup> initial electronic state corresponding to Ce<sup>3+</sup>, while those labeled u' and v' represent the 3d<sup>10</sup>4f<sup>0</sup> initial electronic state corresponding to Ce<sup>4+</sup>. The coexistence of Ce<sup>3+</sup> and Ce<sup>4+</sup> might generate oxygen vacancy by electron transfer, which might contribute the high adsorption capacity of oxygen-containing compounds and high deoxygenation activity.



Figure 1. (a) XRD patterns, (b) TEM images, (c) XPS spectra and (d) Particle size distribution of Ni<sub>3</sub>P and Ce-Ni<sub>3</sub>P(0.3).

According to the calculated k and  $E_a$  of cresols over these two catalysts summarized in Table 1, it could be concluded as follows: (1) Over these two catalysts, the reactivity of cresols increased with increasing temperature, and Ce-Ni<sub>3</sub>P(0.3) possessed higher activity than those over Ni<sub>3</sub>P under the same reaction conditions. After introduction of Ce, the HDO activity of cresols increased, ascribing to the electronic and dispersion effect. (2) Over Ni<sub>3</sub>P, the activity of cresols decreased as followed: m-cresol > p-cresol > o-cresol. However, over Ce-Ni<sub>3</sub>P(0.3), p-cresol presented the highest reactivity, followed by m-cresol, with o-cresol the lowest. The different trend of cresol isomers reactivity over these two catalysts might be due to the steric hindrance of methyl group and/or the adsorption characteristic of the reactants.

| catalyst                  | reactant | $k \pmod{\mathrm{g}^{-1} \min^{-1}}$ |        |        |        | $E_a$                                  |
|---------------------------|----------|--------------------------------------|--------|--------|--------|----------------------------------------|
|                           |          | 150 °C                               | 175 °C | 200 °C | 225 °C | (kJ mol <sup>-1</sup> ) <sup>[b]</sup> |
| Ni <sub>3</sub> P         | o-cresol | 0.3                                  | 1.1    | 3.9    | 7.8    | 80.8                                   |
|                           | m-cresol | 0.8                                  | 1.4    | 3.2    | 5.2    | 46.2                                   |
|                           | p-cresol | 0.6                                  | 1.3    | 3.0    | 5.9    | 52.7                                   |
| Ce-Ni <sub>3</sub> P(0.3) | o-cresol | 1.3                                  | 2.7    | 6.8    | 14.1   | 57.3                                   |
|                           | m-cresol | 1.8                                  | 3.6    | 6.8    | 10.3   | 41.0                                   |
|                           | p-cresol | 3.4                                  | 4.8    | 7.2    | 12.2   | 29.7                                   |

Table 1. HDO of cresols over Ni<sub>3</sub>P and Ce-Ni<sub>3</sub>P(0.3).

[a] Calculated by pseudo first order equation.  $k = [\ln(1-x)]/\tau$ , where x and  $\tau$  represent the conversion of cresol and weight time, respectively. Weight time ( $\tau$ ) is defined as:  $\tau = w_{cat}/n_{feed}$ , where  $w_{cat}$  and  $n_{feed}$  denote the catalyst weight (0.05 g) and the total mole flow rate of the feed, respectively. [b] The activation energy ( $E_a$ ) is calculated according to Arrhenius equation.

## 4. Conclusions

Ce is a promising promoter for HDO of cresol over unsupported Ni<sub>3</sub>P. XRD and XPS results revealed that Ce species in Ce-Ni<sub>3</sub>P(0.3) were mainly in CePO<sub>4</sub> form and both Ce<sup>4+</sup> and Ce<sup>3+</sup> coexisted on the surface of the catalysts. Less electron transferred from Ni to P atom after introducing Ce, which corresponded to the enhancement of metallicity of nickel atom of Ce-Ni<sub>3</sub>P(0.3), leading to higher hydrogenation activity. After introducing Ce, the reaction rate constant increased, but the apparent activation energy decreased. Over Ni<sub>3</sub>P, the activity of cresols decreased as followed: m-cresol > p-cresol > o-cresol. However, over Ce-Ni<sub>3</sub>P(0.3), p-cresol presented the highest reactivity, followed by m-cresol, with o-cresol the lowest.

#### References

- 1. A. Corma, S. Iborra, A. Velty, Chem. Rev., 107 (2007) 2411.
- 2. S. T. Oyama, J Catal., 216 (2003) 343.