Preferential dissolution of copper in CuMnOx: effect of the starting binary oxide to get new efficient γ -MnO₂-like catalysts

Zhiping Ye, Jean-Marc Giraudon,^{*} Jean-François Lamonier

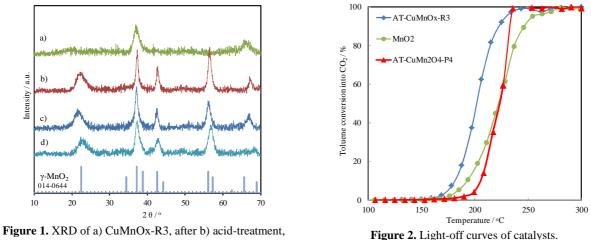
^aUniv. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, 59000, France *Corresponding author: jean-marc.giraudon @univ-lille1.fr

Abstract: This work investigates the concept of preferential dissolution from CuMnOx by HNO₃ treatment to acquire novel γ -MnO₂ like polymorphs through Cu extraction. Two host CuMnOx oxides were tested: a crystallized CuMn₂O₄ spinel phase with a SSA of 47 m^2/g and an amorphous CuMnOx with a Mn/Cu atomic ratio of 4.8 (SSA: $166m^2/g$). How the properties of the host oxides can affect the final γ -MnO₂-like properties were particularly studied. Finally these new y-MnO₂-like oxides were evaluated for toluene oxidation.

Keywords: Acid treatment, Toluene, Total oxidation catalysis, Cu-Mn mixed oxides.

1. Introduction

 MnO_2 is one of the best promising candidates among transition metal oxides for catalytic oxidation due to its low cost, environmentally compatibility, multivalent and non-stoichiometric composition. The polymorphs λ -, β -, and γ -MnO₂ phases, for their part, have structures consisting of different threedimensional packing of MnO_6 octahedra units. Among the different strategies of MnO_2 preparation very little work has been reported on the cation selective dissolution in acid media starting from Mn based binary oxides apart those from normal spinel AMn₂O₄ compounds (A = Li)¹ and very recently from LaMnO₃^{2,3}. Thus the treatment in diluted HNO₃ of a three-dimensionally ordered macroporous LaMnO₃ perovskite selectively removed La cations to get a novel γ -MnO₂-like material exhibiting improved catalytic properties in CO oxidation² and in total oxidation of toluene³. Herein, we investigate the possibility to extent the concept of selective dissolution to CuMnOx using HNO₃ treatment to acquire novel MnO₂ like polymorphs. This solid transformation is concomitantly based on the disproportionation ability of Mn^{3+} to give MnO_2 and Mn^{2+} as well as on the affinity of Cu²⁺ to complex with NO₃⁻ ligand. The first host structure is a crystallized $CuMn_2O_4$ spinel phase synthesized by-coprecipitation⁴ exhibiting Cu^+/Cu^+ and Mn^{4+}/Mn^{3+} valences on its surface. The second precursor is a rather amorphous CuMnO_x prepared by the redox-precipitation method⁵ exhibiting high SSA. The catalytic performances of the calcined acid treated catalysts were evaluated in total toluene oxidation and discussed in the light of the nature of host oxides.


2. Experimental

The spinel-type CuMn₂O₄ (CuMn₂O₄-P4) was prepared using a co-precipitation method⁵. The amorphous CuMnOx (CuMnOx-R3) was prepared using the redox-precipitation method⁶. Typically 0.5 g of host oxide was immerged in 50 mL of an aqueous solution of HNO₃ (10M) and the suspension was stirred for 65h (CuMn₂O₄-P4) and 5h (CuMnOx-R3). After filtration and intense washing with deionized water and drying overnight at 100 °C the resulting powders were calcined at 300°C for 2h. The final samples were labelled AT-CuMn₂O₄-P4 and AT-MnOx-R3 (AT: acid treated). The fresh acid treated materials were characterized by SEM/EDX, N₂ physisorption, XRD, H₂-TPR, XPS and ToF-SIMS analyses. The catalysts were tested for toluene oxidation in similar conditions as described elsewhere⁶.

3. Results and discussion

The kinetic of Cu extraction is faster on the amorphous-like oxide host. Indeed after 5h of acid treatment, the Cu/Mn atomic ratio decreases by a factor of about 10 and 2 for Cu/MnOx-R3 and Cu/Mn₂O₄-P4,

respectively (Table 1). Thus a treatment of 65h for CuMn₂O₄-P4 was carried out resulting into an increase of the efficiency of Cu removal as the Cu/Mn ratio decreases to 0.078. The efficiency of Cu extraction is also well monitored using XPS and ToF-SIMS measurements.

c) washing, d) calcination

The XRD patterns after acid treatment, washing and calcination presented in Fig.1 for CuMnOx-R3 evidence the formation of a γ -MnO₂-like oxide. Comparatively, when considering CuMn₂O₄-P4, a mixture of λ/γ -MnO₂ is highlighted after acid-treatment, the relative content of γ -MnO₂ increasing after washing to be the only detected crystallized phase after calcination. Upon Cu extraction, whatever the host oxide differences, the physico-chemical properties of the final γ-MnO₂-like oxides are not so different in terms low-temperature reducibility, SSA and oxygen mobility. Upon the removal of Cu cations, the obtained AT-CuMnOx-R3 sample showed a higher toluene oxidation catalytic activity ($(T_{50})_{CO2} = 202^{\circ}C$) than the AT-CuMn₂O₄ sample ((T_{50})_{CO2} = 202°C) and a reference α -MnO₂ ((T_{50})_{CO2} = 223°C).

	Cu/Mn ^a	SSA / m ² .g ⁻¹	H ₂ consumption / mmol.g ^{-1b}	(T ₅₀)CO ₂ /°C
CuMn ₂ O ₄ -P4	0.56	48	-	-
AT-CuMn ₂ O ₄ -P4	0.078	91	10.55	224
CuMnOx-R3	0.21	166	-	-
AT-CuMnOx-R3	0.019	105	10.63	202

a: molar ratio (EDX) ; b: From H₂-TPR

4. Conclusions

In summary, we report for the first time an easy method to synthesize new γ -MnO₂-like catalysts utilizing CuMnOx as starting hosts. This novel template free route to γ -MnO₂-like oxides, through the extension of the selective dissolution concept applied to these mixed oxides, opens new perspectives in the design of novel doped γ -MnO₂-like oxides as possible efficient catalysts in different fields.

References

- H. D. Larcher, P. Courjal, R. H. Urbina, B. Gérand, A. Blyr, A. du Pasquier, and J-M. Tarascon, J. Electrochem. Soc. 145 1. (1998) 10.
- 2. W. Si, Y. Wang, Y. Peng, and J. Li, Angew. Chem. Int. Ed. 54 (2015) 7954.
- W. Si, Y. Wang, Y. Peng, X. Li, K.Li and J. Li, Chem. Commun. 51 (2015) 14977. 3.
- H. Einaga, A. Kiya, S. Yoshioka, Y. Teraoka, Catal. Sci. Technol. 4 (2014) 3713. 4.
- E.C. Njagi, C.-H. Chen, H. Genuino, H. Galindo, H. Huang, S.L. Suib, Appl. Catal., B. 99 (2010) 103. 5.
- Z. Ye, J.-M. Giraudon, N. Nuns, P. Simon, N. De Geyter, R. Morent, J.-F. Lamonier, Appl.Catal.B: Environ. (doi : 6. org/10.1016/j.apcatb.2017.06.072).