Architecting Novel Metal Sulfide Photocatalysts for Highly Efficient Resource Utilization of H₂S

Meng Dan,^a Ying Zhou^{a,b,*}

^a The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China
^b State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China.
*Corresponding author:+862883037406, yzhou@swpu.edu.cn

Abstract: Hydrogen sulfide (H_2S) , owing to the extremely toxic, malodorous and corrosive nature, is a huge obstacle for the exploitation of acid oil and gas reservoirs. Therefore, resource utilization of H_2S has become a hotspot research in recent years. Among them, the photocatalytic splitting of H₂S into H₂ and S has attracted great attention because H₂ production and H₂S removal are simultaneously achieved. However, the deactivation of the photocatalysts and lack of suitable setup for photocleavage of H_2S to H_2 limit its wide application. Herein, we constructed a complete setup for H_2 production from H_2S . Simultaneously, a series of metal sulphide composites have been successfully designed and prepared by a simple solvothermal method. Among them, the novel MnS/In₂S₃ composites show a high photocatalytic activity for H₂ production from H₂S under the visible-light irradiation. A maximum H₂ production rate of 8360 μ mol g⁻¹ h⁻¹ can be achieved over $MnS/In_2S_3_0.7$ catalyst, and the corresponding QE of this sample is as high as 34.2% at 450 nm even in the absence of any noble-metal co-catalysts. Additionally, the "narrow-narrow band gap" metal sulphide composites (In_2S_3/CuS) was also prepared, and then the photocatalytic performance was studied by splitting H₂S to produce H₂, for the first time. The result demonstrated that the as-obtain In₂S₃/CuS composite possess a superior visible-light photocatalytic activity (14950 μ mol g⁻¹ h⁻¹) and long-term durability in H₂S splitting. In order to further enhance visible-light photocatalytic H₂ production activity. The novel MnS/(In_xCu_{1-x})₂S₃ composites were sucessfully constructed. And a maximum H₂ production rate of 29252 µmol g⁻¹ h⁻¹ can be achieved over a MnS/ $(In_xCu_{1-x})_2S_3$ with optimized composition, and the corresponding QE of this sample is as high as 62.6 % at 450 nm even in the absence of any noble-metal co-catalysts. All in all, the construction of H₂S decomposition setup and selection of metal sulphides photocatalysts as photocatalysts to the resource utilization of H₂S is of vital importance and practical signifcance.

Fig.1 a) Schematic diagram of the MnS/In_2S_3 photocatalytic system; b) H_2 evolution rate over $MnS/(In_xCu_{1-x})_2S_3$ composites: c) Transient Photocurrent of In_2S_3/CuS composite under the visible-light irradiation.

References

- 1. M. Dan, Q. Zhang, S. Yu, A. Prakash, YH. Lin, Y. Zhou *. Appl. Catal., B. 217 (2017) 530.
- 2. F, Wang, S. Q. Wei, Z. Zhang, G.R. Patzke, Y. Zhou *. Phys. Chem. Chem. Phys. 18 (2016) 6706.
- 3. S. Q. Wei, F. Wang, M. Dan, K. Y. Zeng, Y. Zhou *. Appl. Surf. Sci. 422 (2017) 990.
- 4. Z. G. Li, Q. Zhang, M. Dan, Z. Guo, Y. Zhou *. Mater. Lett. 201 (2017) 118.
- 5. M. Dan, Q. Zhang, Y. Q. Zhong, Y. Zhou*. J. Inorg. Mater. 32 (2017) 1308.