Constrained Growth of MoS₂ Nanosheets within a Mesoporous Silica Shell and Its Effects on Defect Sites and Catalyst Stability for H₂S Decomposition

Kelvin Mingyao Kwok,^{a,b} Sze Wei Daniel Ong^b, Luwei Chen^{b,+}, Hua Chun Zeng^{a,*}

^aNUS Graduate School for Integrative Sciences and Engineering and Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 119260, Singapore ^bDepartment of Heterogeneous Catalysis, Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 627833, Singapore ⁺chen_luwei@ices.a-star.edu.sg, *chezhc@nus.edu.sg

Abstract: A synthetic approach has been developed to encapsulate nanosized MoS_2 within a mesoporous silica shell. MoO_2 nanocores were first synthesized and coated with mesoporous silica, then converted to $MoS_2@SiO_2$. The MoS_2 nanosheets in $MoS_2@SiO_2$ are short, few-layered and highly curved, resulting in a high density of active catalytic sites. The $MoS_2@SiO_2$ catalyst was used for the decomposition of hydrogen sulfide (H₂S) to hydrogen gas and sulfur solid, demonstrating high catalytic turn-over frequency and thermal stability. Conversion was stable at 55% for up to 38h at 800°C for $MoS_2@SiO_2$, and short-term conversion was up to 67% with the nickel-doped catalyst.

Keywords: molybdenum disulfide, hydrogen sulfide, core-shell

1. Introduction

Molybdenum disulfide (MoS2) is a 2D transition-metal-dichalcogenide that forms a graphene-like layered structure, with inter-layer bound by weak van-der-Waals forces and a spacing of 0.61 nm.¹ MoS₂ has catalytic applications in hydrodesulfurization, hydrodeoxygenation, hydrodenitrogenation and synthesis gas conversion to alcohols. The active sites of MoS₂ are at edge sites at the end of nanosheets, or defects/sulfur vacancies along the basal plane.² Also, the bandgap of the MoS₂ nanosheets change when the number of layers is less than five. Hence, to improve catalytic activity of MoS₂, the nanosheets should ideally be small, thin, with sharp angles. Top-down synthesis methods such as exfoliation produce large crystals, while bottom-up synthesis method like chemical vapor deposition produces uniform large nanosheets with low density of edge sites.³ Hydrothermal or solvothermal would be most suitable to synthesized nanosized MoS₂ nanoparticles. However, nanosized particles often agglomerate at high temperatures and lose long-term stability. Hence, MoS₂ should be synthesized nano-sized, but also well-supported or encapsulated to prevent sintering.

2. Experimental

 MoO_2 nanocores were first synthesized by surfactant-assisted hydrothermal treatment, using ammonium heptamolybdate and polyvinylpyrrolidone (PVP) in water-ethanol co-solvent, treated at 180°C for 16 h. The MoO₂ cores were then coated with mesoporous silica shell using cetyltrimethylammonium chloride (CTAC) as surfactant and tetraethylorthosilicate (TEOS) as silica source, in water-ethanol cosolvent. Finally, MoO₂@SiO₂ was converted to MoS₂@SiO₂ by hydrothermal treatment with thioacetamide in water at 200°C for 24 h (Figure 1, top right). Co and Ni doping can be achieved by adding nitrate salts during the last step. Decomposition of H₂S was carried out in a quartz tube with 40 ml/min gas flow of 2500 ppm H₂S in N₂ with 50 mg of catalyst from 500-800°C at 1 atm. H₂ product was measured using gas chromatography (GC). Detailed information can be found in our publication.⁴

3. Results and discussion

The synthesized core-shell $MoS_2@SiO_2$ (Figure 1, left) has a 60 nm core comprising many MoS_2 nanosheets with high curvature, few layers and disoriented shape, which provides a high density of defect sites (active sites). The MoS_2 core is surrounded by mesoporous silica, confirmed by N_2 physisorption and

TEM imagery. XRD analysis shows low crystallinity, Raman analysis shows highly-strained nanosheets, and XPS analysis shows high concentration of defect sites.

When tested for H_2S decomposition, $MoS_2@SiO_2$ was found to have higher turnover frequency (TOF) than bulk MoS_2 or MoS_2 nanoparticles (with no mesoporous silica shell). Furthermore, $MoS_2@SiO_2$ was stable up to at least 38 h (55% H_2S conversion at 800°C) and showed less sintering and loss of active sites compared to bulk or nanoparticle MoS_2 . Solid sulfur could be collected at the outlet of the reactor tube (Figure 1, bottom right). Doping with Ni or Co improved the catalytic performance further (long-term H_2S conversion: 57%).

Figure 1. Left: TEM and SEM images of (a) MoO₂ nanocores, (b) MoO₂@SiO₂, (c-f) MoS₂@SiO₂; Top right: Synthesis route of MoS₂@SiO₂; Bottom right: solid sulfur collected after H₂S decomposition reaction.⁴

4. Conclusions

We have synthesized $MoS_2@SiO_2$ core-shell catalyst with highly-curved few-layered MoS_2 nanosheets constrained within a mesoporous shell. The catalyst has high turnover frequency and long-term stability for H₂S decomposition to H₂ and S. While currently H₂S is treated using the Claus process to yield water and sulfur, using the $MoS_2@SiO_2$ catalyst we can instead decompose H₂S to produce hydrogen as a clean energy source or as a recycle feed for hydrodesulfurization.⁵

References

- 1. L. Yang, W. Zhou, D. Hou, K. Zhou, G. Li, Z. Tang, L. Li, S. Chen, Nanoscale 7 (2015), 5203-5208.
- G. Li, D. Zhang, Q. Qiao, Y. Yu, D. Peterson, A. Zafr, R. Kumar, S. Curtarolo, F. Hunte, S. Shannon, Y. Zhu, W. Yang, L. Cao, J. Am. Chem. Soc. 138 (2016), 14121-14128.
- 3. A. Jawaid, D. Nepal, K. Park, M. Jespersen, A. Qualley, P. Mirau, L.F. Drummy, R.A. Vaia, Chem. Mater. 28 (2016), 337-348
- 4. K.M. Kwok, S.W.D. Ong, L. Chen, H.C. Zeng, ACS Catal. 8 (2018) 714-728.
- 5. K. Fukuda, M. Dokiya, T. Kameyama, Y. Kotera, Ind. Eng Chem. Fundam. 17 (1978), 243-248.