Nanosized aluminogallosilicate MFI zeolites in methanol aromatization: the catalytic nature of framework and non-framework Ga species

Yu-Yin Chen, Chi-Ying Hsieh, Yu-Chuan Lin*

Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan *Corresponding author: +886-6-2344496, yclin768@mail.ncku.edu.tw

Abstract: Methanol aromatization (MTA) is propelled by the burgeoning coal-based industry. Nanoscaled aluminogallosilicate MFI zeolites ([Ga, Al]-ZSM-5) with varying Ga/Al ratio were synthesized. Physicochemical characterizations of catalysts were performed, and the catalytic behaviors of MTA were evaluated. Both Brønsted acids and non-framework Ga species are indispensable in cyclization and dehydrogenation, respectively, of hydrocarbon intermediates to form aromatics. Framework Ga cations are also dehydrogenation-active, but had negligible impact on MTA activity. Approximately 80% aromatics yield can be achieved over an aluminogallosilicate MFI with a Ga/Al ratio of 1/2. This is attributed to the proper concentration of Brønsted acids and non-framework Ga species.

Keywords: Aromatics, Gallium, Methanol, Nanosize, ZSM-5.

1. Introduction

The investigation of methanol conversion to aromatics (MTA) is burgeoning. An effective MTA catalyst should have high dehydrogenation and cyclization activities, together with a 10-member ring space confinement and a low transport limitation. Accordingly, a MFI zeolite with a nanoscaled particle size and containing dehydrogenation-active promoter, e.g., Ga, should be MTA effective. Nonetheless, an in-depth understanding of how framework and non-framework Ga species influence MTA catalysis, and possible contact synergy between Ga cations and Brønsted acids is still missing. This study aims to clarify these unsolved questions.

2. Experimental

A seed-induced crystallization method [1] was employed to prepare nanosized MFI aluminosilicate, aluminogallosilicate, and gallosilicate catalysts. The ratio of tetravalent cation-to-trivalent cation was kept at 40 for all catalysts. Hereafter, the proton-form nanosized [Al]-ZSM-5, [Ga, Al]-ZSM-5 (Ga/Al = 1/2, 1/1/ and 2/1), and [Ga]-ZSM-5 were denoted as HnAl, HnGa₁Al₂, HnGa₁Al₁, HnGa₂Al₁, and HnGa, respectively. Acid treatment was employed to selectively extract non-framework Ga species with negligible impact on framework Ga cations [2], and acid-washed catalysts were labeled as HnAl-a, HnGa₁Al₂-a, HnGa₁Al₁-a, HnGa₂Al₁-a, and HnGa-a. Physicochemical characterizations included N₂ adsorption, ICP-AES, XRD, SEM, TEM, MAS NMR, NH₃-TPD, pyridine-IR, and methanol-TPD-MS were conducted. Catalytic evaluation was executed in a continuous fixed-bed system annexed with an in-line GC under atmospheric pressure [3].

3. Results and discussion

The surface areas of all samples were in 380 to 420 m²/g range. Aggregated microspheres consisting of cubic crystals in a range of approximately 50-150 nm were observed by SEM. The TEM images displayed small crystal size (less than 100 nm), and no Ga clusters were speculated. XRD patterns showed MFI characteristic responses, but a decreasing trend of the relative crystallinity was found by increasing Ga content. The estimated framework Si/M (M= Al and/or Ga) ratio by ²⁹Si MAS NMR decreased following an order as: HnAl (32.7) > HnGa₁Al₂ (30.7) > HnGa₁Al₁ (30.2) > HnGa₂Al₁ (28.5) > HnGa (25.6). The *h*-peak of NH₃-TPD decreased following an order as: HnAl (453 °C) > HnGa₁Al₂ (413 °C) > HaGa₁Al₁ (412 °C) > HaGa₂Al₁ (408 °C) > HnGa (403 °C). All the above results showed that the higher the Ga content, the more the amorphization extent and lower Brønsted acidity can be formed. The acid-treated, Ga-incorporated samples displayed similar morphology, crystallinity, with slightly decreased Lewis acid concentration

compared to their untreated counterparts. The combinative results of ICP, ⁷¹Ga MAS NMR, and pyridine-IR showed that the acid treatment extracts most of non-framework Ga species whilst maintains framework Ga cations.

Figure 1 shows the H_2 desorption profiles of methanol-TPD-MS of fresh and acid-treated catalysts. Negligible H_2 signal was identified for HnAl, while a spike accompanying with a multi-hump response was speculated for each Ga-containing catalyst. The low H_2 spike position and strong H_2 signal at approximately 460 °C for HnGa₁Al₂ indicates its relatively high dehydrogenation activity compared to other catalysts. As for each acid-treated, Ga-containing catalyst, the intensity of H_2 desorption signal decreased significantly compared to its untreated counterpart. This underlines that Ga species, either in framework or nonframework position, are dehydrogenation-active.

Figure 1. H_2 desorption profile of fresh and acid-treated samples in methanol TPD.

Figure 2. Aromatic yields in 400, 450, and 500 °C for fresh and acid-treated catalysts in MTA.

Figure 2 displays the aromatic yields of parent and acid-washed catalysts. Substantially high aromatic yield (80%) can be achieved over HnGa₁Al₂ at 500 °C, in line with its high dehydrogenation activity. This also suggests a proper Brønsted/Lewis (i.e., framework Ga and Al-to-non-framework Ga) ratio (approximately equals to 2) of an aluminogallosilicate MFI catalyst in MTA. Compared to fresh Ga-containing catalysts, aromatic yields of acid-treated catalysts decreased significantly (a fractional decrease of more than 40%). This is related to the removal of dehydrogenation-active, non-framework Ga species. However, as observed in Figure 1, acid-washed catalysts still showed H₂ desorption signals, implying that framework Ga cations also play a role in dehydrogenation of hydrocarbon intermediates. Nonetheless, framework Ga species cannot promote aromatic yields in MTA.

4. Conclusions

Nanosized MFI aluminosilicate, aluminogallosilicate, and gallosilicate catalysts, and their acidtreated counterparts, were characterized and evaluated in MTA. A proper Brønsted/Lewis ratio of 2 was discovered, and Ga species, either in non-framework or framework position, were found to be dehydrogenation-active. However, merely non-framework Ga species can enhance aromatics yields.

References

- 1. T. Xue, L. Chen, Y.M. Wang, M.-Y. He, Microporous and Mesoporous Materials, 156 (2012) 97-105.
- 2. R. Monqueca, A. Parisi, S. Gonzalez, G. Giannetto, Zeolites, 12 (1992) 806-809.
- 3. P.C. Lai, C.H. Chen, C.H. Lee, Y.C. Lin, ChemistrySelect, 1 (2016) 6335-6344.