The influence of modifiers ($\mathbf{G a}$ and $\mathbf{Z r}$) on the performance of $\mathbf{C u Z n}$ catalysts for carbon dioxide hydrogenation to methanol

Bongokuhle Xaba, ${ }^{\text {a,** }}$ Holger Friedrich, ${ }^{\text {a }}$ Abdul Mahomed, ${ }^{\text {a }}$ Sooboo Singh ${ }^{\text {a }}$
${ }^{\text {a }}$ University of KwaZulu-Natal, School of Chemistry and Physics, Durban, 4000, South Africa
*Corresponding author: 212509650@stu.ukzn.ac.za

Keywords: methanol synthesis, CO_{2} hydrogenation, Copper catalysts.

1. Introduction

Global warming is the conundrum of the twenty-first century and strategies that can convert CO_{2}, the most prevalent greenhouse gas to valuable products such as methanol, a clean fuel are very attractive. ${ }^{1,2}$

2. Experimental (or Theoretical)

In this work zirconium and gallium promoted $\mathrm{Cu}-\mathrm{Zn}$ supported methanol synthesis catalysts were prepared by incipient wetness impregnation, characterized and evaluated in the conversion of CO_{2} to methanol. The catalytic testing was performed in the fixed-bed reactor.

3. Results and discussion

Figure 1. H2-TPR profiles

Table 1. The selectivities at isoconversion of 5.4% for $\mathrm{CuZnO}-\mathrm{ZrO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{CZZA})$ catalyst $\left(\mathrm{P}=20 \mathrm{bar}, \mathrm{T}=240^{\circ} \mathrm{C}\right.$)

4. Conclusions

The catalytic results demonstrated that the Zr incorporated (CZZA) catalyst had the highest methanol productivity relative to the other two evaluated catalysts due it higher reducibility.

References

1. J. Toyir, P. R. R. de la Piscina, J. L. G. Fierro and N. S. Homs, Appl. Catal., B, 2001, 29, 207-215.
2. L. Fan and K. Fujimoto, Energy Convers. Manage. , 1995, 36, 633-636.
3. P. Khirsariya and R. K. Mewada, Procedia Eng., 2013, 51, 409-415.
