NH₃ synthesis using combination of Ru catalyst, hydrogen-permeable membrane, and phosphate electrolyte from N₂ and H₂O by electricity.

Kanako Imamura,^a Jun Kubota^{a*}

^aDepartment of Chemical Engineering, Fukuoka University, Fukuoka, 814-0180, Japan *Corresponding author: +81-92-865-6031, jkubota@fukuoka-u.ac.jp

Abstract: A new NH₃ synthesis devise with a combination of Ru catalysts, hydrogen-permeable membranes, and phosphate electrolytes from N₂, H₂O, and electricity has been investigated. The CsH₂PO₄-based electrolyte was operated at 250°C for splitting water between a Pd-Ag membrane and Pt anode by electrolysis. Hydrogen in the Pd-Ag membrane was extracted from the back-side of membrane to form NH₃ by the Ru-catalyst. This devise synthesized NH₃ with the rate of 9×10^{-10} mol s⁻¹ cm⁻² at current density of 10 mA cm⁻². Kinetics of NH₃ synthesis is discussed in this presentation.

Keywords: Ammonia synthesis, electrolysis of water, energy carriers

1. Introduction

Ammonia synthesis is one of the largest chemical process in the modern society, which is utilized for the production of artificial fertilizers to maintain the human life. Most of NH₃ is currently synthesized from H₂ based on fossil resources, and the energy of H₂ production for NH₃ synthesis is considerable. Recently, NH₃ attracts attention as an energy carrier because it has high hydrogen density, flammability in combustion engines, and applications to direct fuel-cells. When NH₃ is synthesized from renewable energies, it would be a promising technology for future human society. Even using conventional technologies, NH₃ can be synthesized from the combination between water electrolysis to produce H₂ from renewable energy sources and NH₃ synthesis from H₂. However, water splitting is large endothermic reaction and NH₃ synthesis from H₂ is large exothermic reaction. If water electrolysis and NH₃ synthesis are operated separately without heat exchange, this energy loss is remarkable. The combination of electrolysis and NH₃ synthesis in a single devise in thermal equilibrium can compensate the endothermic and exothermic heats in the respective reaction steps. In this manner, electrochemical synthesis of NH₃ from N₂ and H₂O by electricity is a notable method to produce NH₃ by minimum electricity¹ and numerous attempts has been reported quite recently^{2,3}.

Electrochemical synthesis of NH₃, however, has many disadvantages. The produced NH₃ is easily absorbed into proton-conductive electrolytes, and the moisture for both electrodes easily poisons the active sites of NH₃ catalysts and easily attaches to NH₃ to form aqueous NH₃. To avoid these disadvantages, we propose the NH₃ synthesis devise with a combination of Ru catalysts, hydrogen-permeable membranes, and

phosphate electrolytes as illustrated in Figure. 1. The NH_3 synthesis is driven without any electrochemical potential, but the chemical potential of hydrogen atoms on the NH_3 catalyst is strongly influenced by the chemical potential of hydrogen atoms in hydrogen-permeable membranes which is controlled by the electrochemical potential of hydrogen-permeable membranes. The kinetic properties of the present devise are object of discussion.

2. Experimental

The cell consisted of 600 mg of 2 wt-Ru/Cs⁺/MgO (Ru/Cs⁺=1 mol) catalyst, Pd-Ag (25 mol%-Ag) membrane of 100 μ m thick, CsH₂PO₄/SiP₂O₇ electrolyte, and Pt paste. The apparent cell diameter was 20 mm. They are held in a vessels made of SUS. N₂ gas was fed to the Ru catalyst side at the stated flow rate and Ar gas of 10 cm³-STP min⁻¹ with humidification of

Figure 1. Schematic drawing of NH₃ synthesis using Ru catalysts, hydrogenpermeable membranes, and phosphate electrolytes from N₂, H₂O, and electricity

16 μ L liquid-H₂O min⁻¹ was supplied to the anode side. The exhaust gas from Ru catalyst side was introduced into 1.0 mM H₂SO₄ to collect produced NH₃ and amount of NH₃ was estimated from the electric conductivity of solution. Simultaneously, the exhaust gas was analyzed by a gas chromatograph to estimate the production of H₂. 2 wt%-Ru/Cs⁺/MgO was pretreated by flow of mixture of N₂ and H₂ at 250°C in prior to the NH₃ synthesis with electrolysis.

3. Results and discussion

The formation of NH₃ at the N₂ flow rate of 3 cm³-STP min⁻¹, electrolysis current of 10 mA cm⁻², and various cell temperatures are shown in Figure 2. NH₃ was monotonically produced from the cathode side and the rate of 9.0×10^{-10} mol s⁻¹ cm⁻² was obtained at 250°C. 9.0×10^{-10} mol s⁻¹ equals to 3.2 µmol h⁻¹. The current efficiency for NH₃ was estimated to be 2.6%, and the other part was found to be used for H₂ production. Arrhenius plots are shown in Figure 3. The NH₃ formation at 3.2 mA cm⁻² and that from the 3 H₂ + N₂ flow in the cathode side without electrolysis are also shown in Figure 3. The apparent activation energies for the NH₃ formation at 3.2 and 10 mA cm⁻² were estimated to be 69 and 93 kJ mol⁻¹, respectively. They were somewhat smaller than that from the 3 H₂ + N₂ flow without electrolysis. It was considered that the NH₃ synthesis from N₂ and water electrolysis was operated under N₂-rich conditions resulting in the small apparent activation energies because of less hydrogen poisoning⁴. In Figure 3, it should be noted that

the Arrhenius plots for NH_3 synthesis from N_2 and water electrolysis are deviated from the straight lines at high temperature. The calculation of chemical equilibrium showed that the chemical equilibrium contributed the formation rate of NH_3 of ammonia in the high temperature region.

The dependence of rate of NH_3 formation on the rate of N_2 flow indicated that the NH_3 synthesis was poisoned by the presence of H_2 , so that the N_2 flow rate was much higher than the stoichiometric rate of H_2 production at the maximum NH_3 formation rate. The detailed discussion on the kinetical properties and the strategies for the improvement of devise is shown in this presentation.

4. Conclusions

The combination of Ru catalysts, hydrogen-permeable membranes, and phosphate electrolytes was examined for NH_3 synthesis from N_2 and H_2O by electricity, and the rate of NH_3 formation of 9.0×10^{-10} mol s⁻¹ cm⁻² with a current efficiency of 2.6% was obtained at 250°C. The challenges in the present devise has been discussed.

This work is supported by JST/CREST, "Creation of core technologies for innovative energy carrier utilization aimed at the transport, storage, and use of renewable energy".

References

- I.A. Amar, R. Lan, C.T.G. Petit, S. Tao, J. Solid State Electrochem. 15 (2011) 1845-1860.
- F. Kosaka, N. Noda, T. Nakamura, J. Otomo, J. Mater. Sci., 52 (2017) 2825-2835.
- G. Qing, R. Kikuchi, S. Kishira, A. Takagaki, T. Sugawara, S.T. Oyama, J. Electrochem. Soc., 163 (2016) E282-E287.
- 4. K. Aika, Catal. Today, 286 (2017) 14-20.

Figure 2. NH₃ formation using Ru catalysts, hydrogen-permeable membranes, and phosphate electrolytes from N₂, H₂O, and electricity at various temperatures. The current was 10 mA cm⁻².

Figure 3. Arrhenius plots of rates of NH₃ formation at 3.2 (Δ) and 10 mA cm⁻² (∇) and N₂ flows of 1 and 3 cm³-STP min⁻¹, respectively. The rates of NH₃ formation from mixture gas of 3 H₂ + N₂ are also shown as open circles (O).