CO and CO₂ methanation over Ni/SiC and Ni/SiO₂ catalysts

Thien An Le, Tae Wook Kim, Jieun Kim, Jong Kyu Kang, Eun Duck Park*

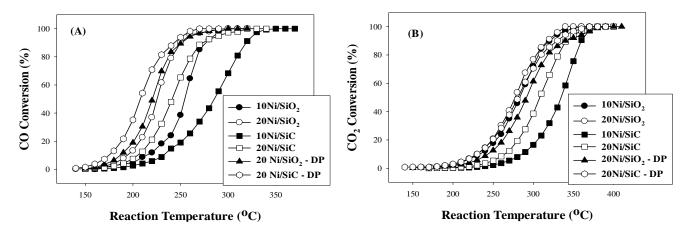
Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon, 16499, Korea

*Corresponding author: 82-31-219-1612, edpark@ajou.ac.kr

Abstract: Various Ni catalysts supported on SiC and SiO₂ were prepared by a wet impregnation (WI) and deposition-precipitation (DP) method and applied them to CO and CO₂ methanation. In the case of CO methanation, a noticeable increase in the specific catalytic activity was observed with increasing Ni content from 10 to 20 wt% irrespective of the preparation method and support. For supported Ni catalysts prepared with WI method, Ni/SiO₂ catalyst is superior to Ni/SiC catalyst for both CO and CO₂ methanation. However, Ni/SiC catalyst prepared with DP method showed the highest catalytic activity for CO methanation among tested catalysts. These results clearly imply that both the preparation method and support are important factors to determine the catalytic activity for CO and CO₂ methanation.

Keywords: CO methanation, CO₂ methanation, Ni catalyst, SiC, SiO₂.

1. Introduction


CO and CO₂ methanation, which are important reactions in energy conversion technology, have been investigated to develop highly efficient catalysts [1-6]. Ni-based catalysts are more preferred for the methanation process owing to their low cost, good activity, and high availability compared with noble metal catalysts [2-4]. The catalytic activity over supported Ni catalysts has been reported to be strongly dependent on the nature of the support [3, 4] and preparation methods [5]. SiO₂ is a well-known conventional support for Ni-based catalysts with high activity [2]. However, its low thermal conductivity might cause the sintering of Ni metal during the highly exothermic reactions including CO and CO₂ methanation. On the other hand, SiC owns the excellent mechanical strength, superior thermal stability, high heating conductivity, and chemical inertness. Therefore, SiC can be considered as a promising catalyst support [6]. Besides, the deposition-precipitation (DP) method is regarded to be more effective for achieving high metal dispersion than a simple wet impregnation (WI) method [5]. Therefore, Ni/SiO₂ and Ni/SiC catalysts with different Ni contents were prepared by the WI and DP method and compared for CO and CO₂ methanation.

2. Experimental

Ni/SiO₂ and Ni/SiC catalysts were prepared by a WI method and DP with urea (DPU) method from an aqueous Ni(NO₃)₂ solution and SiO₂ (Zeochem, ZEOprep 60, S_{BET} = 542 m²/g) or SiC (US Nano, S_{BET} = 43 m²/g). The catalysts were calcined in air at 500 °C and reduced in hydrogen at 500 °C before the activity test. The catalytic activity was measured at atmospheric pressure in the reaction temperature range 140 - 450 °C. The feed gas composed of 1 mol% CO (or CO₂), 50 mol% H₂, and 49 mol% He was contacted with 0.10 g of the catalyst at a flow rate of 100 mL/min. Various techniques were employed to characterize the catalysts including N₂ physisorption, CO₂, H₂ chemisorption, H₂-TPR, chemisorption, CO₂-TPD, XRD, ICP-OES, STEM-EDX, and TEM.

3. Results and discussion

The catalytic activity for CO and CO₂ methanation over Ni catalysts supported on different supports with WI and DP methods are shown in **Figure 1**. The 20 wt% Ni/SiC prepared by DP method showed the highest CO methanation activity: 100% conversion at 300 °C with the smallest C₂H₆ yield (0.4%) (**Table 1**).

Figure 1. Catalytic performance of Ni supported catalysts via different kinds of supports and preparation methods on CO methanation (A) and CO₂ methanation (B). Reaction conditions: 1 mol% CO_x, 50 mol% H₂, 49 mol% He, F/W = 1,000 mL/min/g_{cat}.

Regarding CO₂ methanation, both Ni/SiC and Ni/SiO₂ exhibited 100% CH₄ selectivity. Ni/SiO₂ catalyst appears to be much superior to Ni/SiC catalyst as long as the catalysts are prepared with WI method. However, no noticeable difference in the catalytic activity can be found among Ni/SiO₂ prepared with WI method, Ni/SiO₂ prepared with DP method, and Ni/SiC prepared with DP method.

Catalysts	Products Yield (%)		
	CH4	C2H6	C3H8
20 Ni/SiO ₂ - WI	98.6	1.1	0.3
20 Ni/SiO ₂ - DP	99.3	0.4	0.3
20 Ni/SiC - WI	99.5	0.5	0
20 Ni/SiC - DP	99.6	0.4	0

Table 1. The maximum products yield detected in CO methanation over Ni supported catalysts.

4. Conclusions

 Ni/SiO_2 and Ni/SiC catalysts with different Ni contents were prepared by the WI and DP method and compared for CO and CO₂ methanation. In the case of CO methanation, a noticeable increase in the specific catalytic activity was observed with increasing Ni content from 10 to 20 wt% irrespective of the preparation method and support. For supported Ni catalysts prepared with WI method, Ni/SiO₂ catalyst is superior to Ni/SiC catalyst for both CO and CO₂ methanation. However, Ni/SiC catalyst prepared with DP method showed the highest catalytic activity for CO methanation among tested catalysts.

References

- 1. J. Gao, Q. Liu, F. Gu, B. Liu, Z. Zhong, F. Su, RSC Adv. 5 (2015) 22759.
- 2. P. Lakshmanan, M.S. Kim, E.D. Park, Appl. Catal. A 513 (2016) 98.
- 3. T.A. Le, M.S. Kim, S.H. Lee, T.W. Kim, E.D. Park, Cat. Today 293-294 (2017) 89.
- 4. T.A. Le, T.W. Kim, S.H. Lee, E.D. Park, Cat. Today (2017) https://doi.org/10.1016/j.cattod.2017.09.031.
- 5. P. Burattin, M. Che, C. Louis, J. Phys. Chem. B 102 (1998) 2722.
- 6. G. Zhang, T. Sun, J. Peng, S. Wang, S. Wang, Appl. Catal. A 462-463 (2013) 75.