Oxidative dehydrogenation of ethane and subsequent CO₂ activation on iron oxide-impregnated TiO₂ for chemical looping application

Min hye Jeong,^a Jong wook Bae^{a,*}

^aSchool of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea *Corresponding author: Fax number: +82-31-200-7272: E-mail address: fineiw@skku.adu

*Corresponding author: Fax number: +82-31-290-7272; E-mail address: finejw@skku.edu

Abstract:

Chemical looping process application for oxidative dehydrogenation (CL-ODH) of ethane was verified using iron oxide (Fe_2O_3)-impregnated on TiO_2 support to simultaneously produce the ethylene by ODH as well as CO by subsequent CO₂ activation on the reduced iron oxides. A higher selectivity to ethylene by ethane dehydrogenation and lower CO₂ activation to CO were observed on the 10wt%Fe/TiO₂, which has smaller crystallite sizes and less aggregation as confirmed by N₂-sorption, XRD, H₂-TPR, and XPS analysis. **Keywords**: Chemical looping, Oxidative dehydrogenation (ethane), CO₂ activation, Fe/TiO₂, Redox cycle.

1. Introduction

Commercialized olefin productions have been based on the steam cracking of naphtha, alkanes, and so on¹, however some significant process problems such as coke deposition and CO₂ emissions have been required to be solved. As an alternative method for selective olefin production, oxidative dehydrogenation by chemical looping process (CL-ODH) on the reducible transition metal oxides has been proposed under an O₂-deficient conditions^{2,3}. The CL-ODH reactions follows the reduction step of $C_2H_6 + MeO_x \rightarrow C_2H_4 + MeO_{x-1} + H_2O$, and subsequent oxidation step of $MeO_{x-1} + CO_2 \rightarrow CO + MeO_x$ through the redox cycles of meal oxides. The present study has been focused on investigating the Fe/TiO₂ as an efficient prototype catalyst for chemical looping application.

2. Experimental sections

The TiO₂ nanoparticles was previously synthesized by a soft-template method with structure-directing agent of hexadecyl-trimethylammonium bromide(CTAB). Titanium isopropoxide precursor was added slowly into the aqueous CTAB solution under stirring for 24 h at room temperature, and the mixtures were transferred into Teflon-lined stainless-steel autoclave kept at 110 °C for overnight. The as-prepared powder was washed thoroughly with deionized water and dried at 110 °C for 12 h and finally calcined at 400 °C for 1 h. The iron metal supported TiO₂ catalysts (Fe/TiO₂) were prepared by using iron nitrate precursor through impregnation method, which were calcined at 500°C for 6 h, and they were denoted as Fe(x)/TiO₂ with x = 5, 10, 15 and 20 wt%Fe. Catalytic activity was measured at ambient pressure in a fixed bed tubular reactor with 0.5 g of Fe/TiO₂ at temperature of 550 °C for 4 h using 20vol%C₂H₆/N₂ for a reduction reaction of iron oxides. The CO₂ activation to CO for oxidation reaction was carried out just after the reduction reaction after purging it under N₂ flow at 700 °C using 20vol%CO₂/N₂. The product gases for the separate redox reactions were analyzed using an on-line gas chromatography (Younglin, YL6000) equipped with a Carboxen 1000 packed column using thermal conductivity detector as well as a flame ionization detector with a Plot Q capillary column to analyze the hydrocarbons formed simultaneously.

3. Results and discussion

Figure 1 shows the characteristic bulk and surface properties of the fresh Fe/TiO₂, and N₂ adsorptiondesorption analysis revealed a typical type IV isotherm with the decreased surface area of Fe/TiO₂ by increasing the concentration of iron oxides from 33.9 to 10.4 m²/g with similar pore sizes as shown in **Table 1**. XPS spectra of $2p_{3/2}$ peak appeared at ~ 712 eV can be attributed to the Fe³⁺ species from the main phases of hematite (α -Fe₂O₃), which was confirmed by XRD patterns of the fresh Fe/TiO₂ with the anatase TiO₂ phases (**Figure (D-1**). The reducibility of iron oxides on Fe/TiO₂ measured by TPR showed two characteristic peaks below 400 °C and ~ 570 °C for the reduction of Fe₂O₃(Fe³⁺) to FeO(Fe²⁺) and its subsequent reduction to metallic Fe⁰, respectively (higher reduction peak above 700 °C from the partial reduction of anatase TiO₂ phase). As shown in XRD patterns (**Figure 1(D-2)** and (**D-3**)), the original hematite phases were reduced to Fe₃O₄ and metallic iron on the reduced Fe/TiO₂ and the main iron phases after redox reaction were Fe₃O₄ phases, which were thermodynamically stable iron phases. The catalytic activity as summarized in **Table 1** revealed a higher selectivity to ethylene by ethane dehydrogenation (95.7%) and lower CO₂ activation to CO (0.12 mmol/g_{cat}) on the 10wt% Fe/TiO₂, which was attributed to the smaller iron crystallite sizes with less aggregations during redox reaction as confirmed by the surface I_{Fe}/I_{Ti} ratio from the XPS analysis on the fresh and used Fe/TiO₂ catalysts.

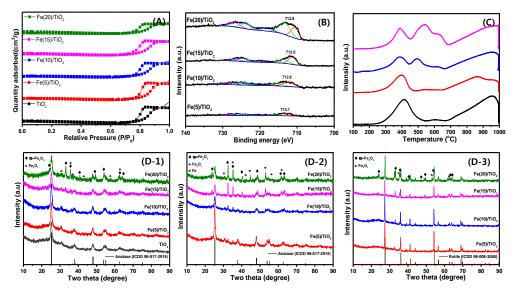


Figure 1. Bulk and surface properties of the fresh Fe/TiO₂; (A) N₂-sorption, (B) XPS, (C) TPR and (D) XRD analysis for (1) fresh, (2) reduced at 550 °C and (3) used Fe/TiO₂ after redox reaction

Table 1. Physicochemical bulk a	nd surface properties of the Fe/Ti	O_2 with its catalytic activity

	N ₂ -sorption ^a	XRD (fresh/used)	H ₂ -TPR	XPS (eV) (fresh/used)		Catalytic activity (redox, mol%)		
Catalyst	$S_g / P_v / P_d$	Crystallite	Consumed	Fe 2p _{3/2}	I _{Fe} /I _{Ti}	Conversion	Product distributions	CO by
		size (Anatase	amount of H ₂			of C ₂ H ₆	by reduction of Fe ₂ O ₃	oxidation
		/Rutile, nm)	(mmol/g _{cat})			(reduction)	$(CO/CO_2/CH_4/C_2H_4)$	(mmol/g _{cat})
Fe(20)/TiO ₂	10.4/0.09/8.6	9.5/39.0	1.99	712.8/711.5	5.67/0.89	3.9	10.2/1.4/3.2/85.2	0.59
Fe(15)/TiO ₂	25.5/0.14/8.2	9.3/35.4	1.17	712.0/711.5	0.38/0.89	4.3	2.8/0.5/2.9/93.7	0.19
Fe(10)/TiO ₂	31.4/0.14/8.8	9.1/40.8	1.61	712.8/711.3	0.20/0.44	6.2	0.6/0.3/3.4/95.7	0.12
Fe(5)/TiO ₂	33.9/0.17/9.2	9.6/12.4	2.40	713.1/709.8	0.08/0.25	9.8	3.8/1.5/5.4/89.1	0.33
0			. 2					

 ${}^{a}S_{g}$, P_{v} , and P_{d} represents the specific surface area (m²/g), pore volume (cm³/g) and average pore diameter (nm), respectively.

4. Conclusions

The prototype Fe/TiO₂ catalyst with main hematite (Fe₂O₃ phases was investigated for the redox reaction of ODH of ethane and CO₂ activation, and a higher selectivity to ethylene by ethane dehydrogenation (95.7%) on the 10wt% Fe/TiO₂ was observed due to its smaller iron crystallite sizes with less aggregations during the redox reaction (CL-ODH) by maintaining thermodynamically stable magnetite (Fe₃O₄) phases, which can be applied for the further chemical looping process.

References

- 1. C.A. Gartner, A.C. van Veen, J.A. Lercher, ChemCatChem 5 (2013) 3196-3217.
- 2. S. Yusuf, L.M. Neal, F. Li, ACS Catal. 7 (2017) 5163-5173.
- 3. Y. Gao, B.L.M. Neal, F. Li, ACS Catal. 6 (2016) 7293-7302.