Morphology effect of nickel phosphide on hydrogen evolution reaction

Hyun-Jung Oh,^a Yong-Kul Lee^{a,*}

^a Laboratory of Advanced Catalysis for Energy and Environment, Department of Chemical Engineering, Dankook University, 152 Jukjeonro, Yongin 16890, South Korea *Corresponding author: +82-31-8021-7216, yolee@dankook.ac.kr

Abstract: The nano of micro sized Ni₂P particles (Ni₂P-N and Ni₂P-M) were synthesized by a ligand stabilization method and applied for hydrogen evolution reaction (HER). The HER reaction was conducted in 0.5 M H₂SO₄ aqueous solution at room temperature with a rotation speed of 1600 rpm at a scan rate of 5 mV s⁻¹. The Ni₂P catalyst was characterized by XRD and zetasizer. Overall, the HER overpotentials (η) measured for the nano and micro Ni₂P to produce cathodic current densities of 20mA/cm² were $\eta = 214$ mV and $\eta = 450$ mV, respectively.

Keywords: Nickel phosphide, hydrogen evolution reaction,

1. Introduction

Hydrogen is a candidate for a practical alternative energy source. Hydrogen evolution reaction (HER) occurs via a proton conducting polymer electrolyte membrane system with an electrocatalyst like Pt, which generates large current densities for the reaction at low overpotentials. Due to the high cost of Pt there have been many attempts to find the Pt replacements. The d-band electron density of Ni₂P (001) surface was calculated near the Fermi level [1-2]. It imply that Ni₂P (001) surface leads to a lower activation energy of hydrogen adsorption. Also Ni₂P is stable in an acidic solution because of the higher content of P atoms [3]. Although For the above reasons, Ni₂P is an active HER and stability relative to other electrocatalysts. Many researcher studied about HER mechanism of Nickel phosphide, shape effect, control Ni and P ratio, etc.[2-5] This study show Ni₂P electro property from a size.

2. Experimental (or Theoretical)

The nano-sized Ni₂P (Ni₂P-N) was synthesized by a ligand stabilization method using trioctylphosphine oxide (TOPO) as a coordinating agent. All synthesis conditions were carried out under nitrogen atmosphere using Schlenk line. The metal precursor Ni(acac)₂ was combined with trioctylphosphine oxide (coordinating ligand) in a 100 ml three neck flask with a condenser. The flask was placed on a heating jacket operated by a temperature controller. The mixture was degassed at 100 °C for 20 min to remove any moisture or oxygen. The temperature was set to heat to 320 °C, a TOP was injected, followed by heating for 4.5 h at 320 °C. The black product was washed with hexane and ethanol [3]. The micron-sized Ni₂P (Ni₂P-M) was prepared by thermal treatment of the Ni₂P-N at 450°C for 1h in N₂.

Electrochemical measurements were conducted in three-electrode system: glassy carbon electrode (working), AgCl/3M KCl electrode (reference), and Pt (counter). The catalysts ink was prepared by mixing of 5 mg of catalyst, 41 μ L of Nafion, 200 μ L of IPA and 400 μ L of ethanol. After homogeneous solution was produced by sonication for several minutes, the catalyst ink was transferred to the working electrode and dried in room temperature until complete evaporation of solvent materials. The electrochemical data were obtained in 0.5 M H₂SO₄ at room temperature with a rotation speed of 1600 rpm at a scan rate of 5 mV s⁻¹. All potential were referred to reversible hydrogen electrode (RHE). The test was conducted under -0.6 V_{RHE}<E<0 V_{RHE}.

3. Results and discussion

Figure 1 shows polarization profiles for HER over the Ni₂P catalysts. The Ni₂P-N exhibits a small onset potential of -79 mV versus RHE while Ni₂P-M shows much negative potential of -124mV, indicating a lower HER activation barrier for Ni₂P-N. Table 1compares onset potential, Tafel slope, and exchange current density for the catalysts. Tafel slopes for Pt/C, Ni₂P-N, and Ni₂P-M were 27.93, 66.97, and 154.93 mVdec⁻¹, respectively. Again, these results confirms a high HER activity of Ni₂P-N compared to Ni₂P-M.

Figure 1. Polarization curves for HER

	Onset potential [mV]	Tafel slope [mV dec ⁻¹]	Exchange current density [mA cm ⁻²]
Pt/C	0	27.93	0.325
Ni ₂ P-N (18 nm)	-79	66.97	0.033
Ni ₂ P-M (0.1µm)	-124	154.93	0.068

Table 1. Onset potential, tafel slope, and exchange current density of different catalysts

4. Conclusions

Two kind of Ni₂P catalysts with different sizes (Ni₂P-N and Ni₂P-M) were prepared to investigate the effect of particles size on the HER activity. The Ni₂P-N exhibited a smaller onset potential and Tafel slope than Ni₂P-M, demonstrating higher HER activity for the smaller Ni₂P catalysts.

References

- E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 135 (2013) 9267.
- 2. J. S. Moon, J. H. Jang, E. G. Kim, Y. H. Chung, S. J. Yoo, Y. K. Lee, J. Catal. 326 (2015) 92.
- 3. Y. H. Chung, K. Gupta, J. H. Jang, H. S. Park, I. Jang, J. H. Jong, Y. K. Lee, S. C. Lee, S. J. Yoo, Nano Energy 26 (2016) 496.
- 4. P. Liu, J. A. Rodriguez, J. Am. Chem. Soc. 127 (2005) 14871.
- 5. Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu, Y. Liu, C. Liu, J. Mater. Chem. A 3 (2015) 1656.