CO₂ hydrogenation over Ru supported on Zr-modified χ-Al₂O₃

Kanyanat Jeenjumras^a, Okorn Mekasuwandumrong^{a,*}

^a Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakorn Pathom 73000, Thailand *Corresponding author: Fax numbe (66)034219368, okornm@yahoo.com

Abstract: Abstract is limited to 100 words.

Zr-modified χ -Al₂O₃ supports were prepared by wet impregnation of zirconium precursors on the gibbsite and following by the thermal treatment. Thus-obtained supports were impregnated with ruthenium (III) nitrosyl nitrate solution. The performance of the catalysts was examined by the temperature programmed reaction of CO₂ with H₂. Results revealed that the appropriate amounts of Zr loading improved the catalytic performance of Ru supported catalysts. The physiochemical properties of each catalyst were characterized by using XRD diffraction, N₂ physisorption and H₂ chemisorption.

Keywords: CO_2 hydrogenation, Zr modified χ -alumina, Ru catalyst

1. Introduction

In the past centuries, the amount of carbon dioxide (CO_2) in the atmosphere has increased continuously due to human activities and the combustion of fossil fuels in the industrial processes. The increasing of CO₂ concentration is a key factor in the greenhouse effect, causing the rising global average temperature and climate change. Therefore, the study of potential strategies to reduce the amount of CO₂ in atmosphere is urgently required [1]. CO₂ hydrogenation is an interesting alternative way to reduce greenhouse effects by converting CO₂ with the presence of hydrogen into value hydrocarbon products.

Among many types of catalyst, Ru is regarded as the most active catalyst and the most stable noble metal [2]. Generally, alumina is one of the most interesting supports due to its varieties of crystalline phases, which possess specific properties for particular applications. Among all Al₂O₃, χ -Al₂O₃ is one of low temperature transition alumina, which offers high surface area and thermal stability. In addition, it has high potential to be used as the catalyst and/or the support [3]. In this work, pure and Zr-modified χ -Al₂O₃ was used as the support for the Ru supported catalyst in the CO₂ hydrogenation reaction. The effect of Zr modification on the physiochemical and catalytic properties of Ru/Zr-modified χ -Al₂O₃ catalyst was investigated.

2. Experimental

2.1. Catalyst preparation

Zr-modified χ -Al₂O₃ support was prepared using the thermal decomposition of the microcrystalline gibbsite (Sigma-Aldrich) impregnating with the solution of zirconium butoxied (Sigma-Aldrich) in xylene at high temperatures. The mixture was treated in a tube furnace with air flow (100 ml/min) at 600°C for 4 hours with a heating rate of 10°C/min. The 1 % Ru/Zr-modified χ -Al₂O₃ catalyst was prepared using the incipient wetness impregnation techniques. 2 g of support was impregnated with ruthenium (III) nitrosyl nitrate solution (Ru(NO)(NO₃)_x(OH)_y, 1.5% Ru in nitric acid, Sigma-Aldrich). The impregnated powder was kept at room temperature for 6 hours and dried at 110°C for 12 hours. After that, the dried powder was calcined in the air at 300°C for 4 hours with a heating rate of 10°C/min.

2.2. Activity test

The catalytic performance of the catalysts was measured in a continuous-flow fixed-bed reactor at atmospheric pressure using temperature programmed reaction method. The catalysts were prior reduced using H₂ with the flow rate of 30 ml/min at 400°C for 2 hours. The feed gas mixture of H₂/CO₂ = 4 with the

balance helium were used in the reaction. GHSV used in this test was fixed at 14,400 h⁻¹. The products were measured using a gas chromatograph (SHIMADZU GC-14B) with a TCD and FID detector.

3. Results and discussion

The performance of the Ru/Zr-modified χ -Al₂O₃ catalysts was investigated using temperature programmed reaction of CO₂ hydrogenation at atmospheric pressures. The graph plotted between catalytic performance and reaction temperature for Ru/ χ -Al₂O₃ catalysts with different ruthenium precursors is shown in **Fig. 1**. It can be seen that the increase in CO₂ conversion depended on the increasing reaction temperature. The increasing of Zr doping contents resulted in the improvement CO₂ conversion profile. The high CH₄ selectivity (more than 90%) had been observed from all Ru supported catalysts. The physiochemical properties of all catalysts are also summarized in **Table** 1. Doping with Zr resulted in the decreasing of the BET surface area and the amounts of H₂ chemisorption. From XRD and TEM results (not shown here), the size of RuO₂ particles deposited on all catalysts did not shown much different. Therefore the drastic decreasing of the Ru metal active site could be due to the increasing of interaction between Ru metal and the Zr-modified support, which retard the adsorption of H₂.

Figure 1. The performance of Ru/Zr-modified χ -Al₂O₃ catalysts as a function of the reaction temperature pattern

Catalyst	Surface area $[m^2 g^{-1}]$	Pore volume [cm ³ g ⁻¹]	Average pore diameter [nm]	H_2 uptake [µmol g ⁻¹]
Ru/Al ₂ O ₃	171	0.21	5.0	31.0
$Ru/5\% ZrO_2\text{-}Al_2O_3$	142	0.22	6.0	2.2
$Ru/10\% ZrO_2\text{-}Al_2O_3$	136	0.19	5.5	6.9
$Ru/15\% ZrO_2\text{-}Al_2O_3$	146	0.18	5.0	9.2

Table 1 Physiochemical properties of all prepared catalysts.

4. Conclusions

The addition of Zr on Ru supported χ -Al₂O₃ catalysts resulted in the improvement of catalytic performance in CO₂ hydrogenation reaction. The characterization result revealed that the addition of Zr changed the interaction between the Ru metal and the alumina support, which affected the catalytic performance of all Ru supported catalysts.

References

- 1. S. Solomon, G.-K. Plattner, R. Knutti and P. Friedlingstein: Proc. Natl. Acad. Sci. Forum 106 (2009) 1704.
- 2. D. Li, N. Ichikuni, S. Shimazu and T. Uematsu: Appl. Catal. A Gen. Forum 172 (1998) 351.
- W. Chaitree, S. Jiemsirilers, O. Mekasuwandumrong, B. Jongsomjit, A. Shotipruk and J. Panpranot: Catal. Today Forum 164 (2011). 302