Selective deNO_x catalysts using Pd-based intermetallic compounds supported on Al₂O₃

Jaewan Jeon^a, Shinya Furukawa^{a,b}, Kenichi Kon^a, Ken-ichi Shimizu^{a,b} *

^aInstitute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan ^bElements Strategy Initiative for Catalysis and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan *Corresponding author: kshimizu@cat.hokudai.ac.jp

Abstract: Catalytic reduction of NO by CO was studied over a series of Pd-M/Al₂O₃ catalysts (M = Cu, In, Zn, Sn, and Pb) prepared by co-impregnation with different metal precursors to develop selective deNO_x catalysts at low temperature. PdIn/Al₂O₃ shows high N₂ selectivity (>99%) even at a low temperature region (<200°C), where the conventional monometallic Pd/Al₂O₃ catalyst shows very low N₂ selectivity (typically 30~40%). Addition of Cu to PdIn/Al₂O₃ significantly increased the catalytic activity without lowering of N₂ selectivity, affording a highly active and selective deNO_x catalyst at low temperature region.

Keywords: Pd-M, deNO_{*x*}, synergistic effect.

1. Introduction

The exhaust gas purification catalyst is also known as a three-way catalyst (TWC) and is indispensable for removal of CO, hydrocarbons and NO_x generated as exhaust gas of the internal combustion engine. Catalytic reduction of NO by CO, that is NO–CO reaction, is one of the important reactions proceeding over TWC. It is known that this reaction is catalyzed by Pd in the reaction mechanism shown in Figure 1. However, N₂O is also formed as a by-product by association of surface N atoms and NO. The by-production of N₂O is undesirable from the viewpoint of removal of NO_x, and it is important to design a catalyst to improve N₂ selectivity.

Figure 1. Mechanism of N2 (left) and N2O (right) formation in NO-CO reaction over Pd catalyst.

Intermetallic compounds have unique crystal structures, surface atomic arrangement, and specific electronic states, hence typically exhibit unique catalytic property compared with the conventional monometallic and solid-solution alloy catalysts. Therefore, in this study, we tested the catalytic performances of various Pd-based intermetallic compounds to investigate the effect of the second metal on N_2 selectivity.

2. Experimental

Al₂O₃ supported Pd and Pd–M (M = Cu, In, Zn, Sn, and Pb) catalysts were prepared by coimpregnation method using γ -Al₂O₃ and Pd(NH₃)₂(NO₂)₂, Cu(NO₃)₂·3H₂O, In(NO₃)₃·xH₂O, Zn(NO₃)₂· 6H₂O, (NH₄)4SnCl₆ and Pb(NO₃)₂ as metal precursors. The catalyst (0.15g) diluted with sea sand (1.85g) was treated under flowing hydrogen (50 ml·min⁻¹) at 400°C for 30 min. The NO–CO reaction was carried out in a fixed-bed continuous flow system by feeding NO (0.5%), CO (0.5%), and He (balance) with the total flow rate of 96 ml·min⁻¹. The gas phase was analyzed by an on-line TCD gas chromatography (Shimazu GC-8A) equipped downstream.

3. Results and discussion

XRD patterns of the prepared catalysts revealed that the desired intermetallic phases were formed with high phase purities. The monometallic Pd catalyst showed a higher NO conversion than other Pd-based bimetallic catalyst (Figure 2a). However, its N₂ selectivity was very low ($30 \sim 40\%$) in this temperature range (Figure 2b). When some intermetallic compounds were used, N₂ selectivity was improved. In particular, intermetallic PdIn showed very high N₂ selectivities at the wide range of NO conversion (20-100%, Figure 2c) and even at low temperatures (175-200°C, Figure 2b). The PdIn/Al₂O₃ catalyst gave a high N₂ yield without N₂O emission with a smaller space velocity (87%, at 250°C).

Figure 2. (a) NO conversion and (b) N₂ selectivity in NO–CO reaction over various Pd-based catalysts. (c) Relationship between NO conversion and N₂ selectivity.

We also prepared a Pd-In-Cu/Al₂O₃ catalyst, which showed higher NO conversions than PdIn/Al₂O₃ without lowering the high N₂ selectivity. Optimization of the metal composition ratio revealed that Pd : In : Cu atomic ratio of 3: 1: 2 gave the highest catalytic activity and selectivity (92% NO conversion and 100% N₂ selectivity at 250°C, Figure 3).

Figure 3. (a) NO conversion and (b) N₂ selectivity in NO–CO reaction over various Pd-In-Cu catalysts.

4. Conclusions

Intermetallic PdIn supported on Al₂O₃ showed high N₂ selectivities in NO–CO reaction at low reaction temperatures ($<200^{\circ}$ C). Addition of Cu to Pd-In/Al₂O₃ showed drastic increase in catalytic activity without lowering N₂ selectivity, which provides a highly active and selective deNO_x catalyst.

References

- 1. S. Roy, A. Baiker, Chem. Rev 109 (2009) 4054-4091
- 2. K. Zorn, S. Giorgio, E. Halwax, C. R. Henry, H. Gronbeck, G. Rupprechter, J. Phys. Chem. C 115 (2011) 1103-1111
- 3. S. Furukawa, T. Komatsu, ACS Catal. 7 (2017) 735-765