SCR of NO with C₃H₆ over iron modified Ag/Al₂O₃ catalysts supported on honeycomb ceramic

Yaxin Su,^{a,} * Wenyi Deng^a, Xi Yang^a

^a School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China *Corresponding author: Fax number +86-21-67792522, E-mail address <u>suyx@dhu.edu.cn</u>.

Abstract: Ag/Al₂O₃ catalysts supported on honeycomb ceramic were prepared by sol-gel and impregnation methods and modified with Fe to promote the catalytic performance for SCR of NO with C_3H_6 and to improve the resistance to SO₂ and H₂O. The results showed that the NO reduction efficiency by 7.2Fe/1.9Ag/20Al₂O₃/CM with C_3H_6 was more than 90% and reached about 100% at 500 °C and 550°C respectively. Iron can effectively improve the ability of Ag/20Al₂O₃/CM catalysts to resist SO₂ and H₂O in flue gas.

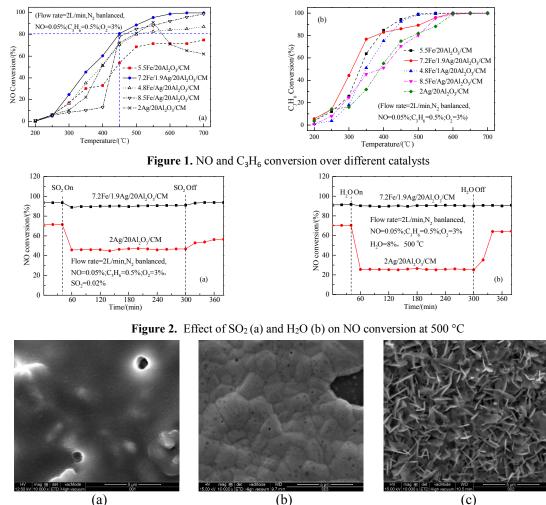
Keywords: SCR of NO, Ag/Al₂O₃ catalysts, C₃H₆, Fe

1. Introduction

Ag supported on Al₂O₃ catalyst showed good activity in the SCR of NO by HC agents [1, 2]. The resistance of Ag/Al₂O₃ catalysts to H₂O and SO₂ is a problem. More et al. [3] used Mg to modify the Ag/Al₂O₃ catalyst and found that Mg can improve the resistance of Ag/Al₂O to SO₂, but H₂O had a great influence on the reduction of NO by Ag/Mg/Al₂O₃, e.g., at 350°C, the addition of 9% H₂O reduced the conversion of NO by 40% and the conversion of reducing agent C₃H₆ by 10% respectively. The resistance of Ag based catalysts to SO₂ and H₂O remains to be further investigated for HC-SCR of NO.

Recent studies demonstrated that iron or iron oxides could effectively reduce NO above 850°C with HC fuels and has a good ability to resist SO₂ and H₂O [4]. Further study found that the iron-based supported catalysts can effectively reduce NO with HC at lower temperature, e.g., Fe/Al₂O₃/Cordierite with a 5.5% Fe loading (mass fraction) can achieve a NO reduction efficiency of up to 97% at 550°C and a better resistance to SO₂ and H₂O in the flue gas [5]. In this study, the Ag/Al₂O₃ catalyst was modified by Fe in order to improve its resistance to SO₂ and H₂O and cordierite honeycomb ceramic was used as the carrier. The C₃H₆-SCR of NO was tested in a flow reactor with simulated flue gas.

2. Experimental


Sol-gel and impregnation methods were used to prepare the catalysts. Raw cordierite honeycomb ceramics were first immersed into the Al₂O₃ sol for 3h followed by drying at 110 °C for 12 h and calcining at 500°C for 5 h to prepare the 20Al₂O₃/CM samples. Then the 20Al₂O₃/CM samples were immersed into the 1 mol/L AgNO₃ solution first for 10 hours, then dried at 110 °C for 12 h and calcined at 500°C for 5 h to obtain the Ag/20Al₂O₃/CM samples, which were then immersed into the 1 mol/L Fe(NO₃)₃ solution to finally obtain the xFe-yAg/20Al₂O₃/CM catalysts, where x and y note the mass fraction of loaded Fe and Ag respectively based on the raw cordierite honeycomb ceramics mass. The physical-chemical properties were characterized by SEM, XRD, Nitrogen adsorption/absorption, H₂ temperature programmed reduction (H₂-TPR) and pyridine adsorption FTIR (Py-FTIR), etc.

The C₃H₆-SCR of NO evaluation were conducted in a one-dimensional electrically heated temperature programmed ceramic tubular reactor in simulated flue gas atmosphere (total flow rate 1.5L/min, 500ppm NO, 0.5% C₃H₆, 3% O₂, 8% H₂O, 200ppm SO₂, N₂ balanced) at 200-700 °C.

3. Results and discussion

Figure 1 presents the NO and C_3H_6 conversion. The NO conversion to N_2 over 7.2Fe/1.9Ag/20Al₂O₃/CM was about 100% at 550 °C and did not decrease as the temperature increased. However, the NO conversion over 2.0Ag/20Al₂O₃/CM decreased from about 90% at 550°C to about 60% as the temperature increased to

700 °C. Figure 2 presents the effect of SO₂ and H₂O in the flue gas on the NO conversion. The results showed that $7.2Fe/1.9Ag/20Al_2O_3/CM$ had a good resistance to SO₂ and H₂O, while $2.0Ag/20Al_2O_3/CM$ would lost its reactivity in the presence of SO₂ and H₂O.

Figure 3. SEM images of (a) 20Al₂O₃/CM; (b) 2Ag/20Al₂O₃/CM; (c) 7.2Fe/1.9Ag/20Al₂O₃/CM

Figure 3 presents the SEM images of the catalysts. The surface of 2Ag/20Al₂O₃/CM was relatively smooth and a layer of Ag₂O was formed on the surface of the carrier, 20Al₂O₃/CM. When iron was used to modify the 2Ag/20Al₂O₃/CM catalyst, e.g., 7.2Fe/1.9Ag/20Al₂O₃/CM, the catalyst surface became porous and needle-like and sheet-like crystals whose main phases were Fe₃O₄ and AgFeO₂ based on XRD patterns were formed. The other characterization was also conducted to investigate the influence of Fe on the physical and chemical properties of the catalysts. H₂-TPR results showed that 7.2Fe/1.9Ag/20Al₂O₃/CM has better reduction properties than Ag/20Al₂O₃/CM in a wider temperature range. Pyridine adsorption spectroscopy (Py-FTIR) results showed that Fe increased the Lewis acid sites on the catalyst surface.

4. Conclusions

Fe loading can effectively improve the resistance of Ag/Al_2O_3 catalysts to SO_2 and H_2O . NO conversion to N_2 was higher than 90% at 500 °C when there was 200 ppm SO_2 and/or 8% H_2O and reached about 100% at 550 °C when 7.2Fe/1.9Ag/20Al_2O_3/CM was used as the catalyst for C_3H_6 -SCR of NO.

References

- 1. T Chaieb, L Delannoy, C Louis, C Thomas, Appl Catal B Environ, 142–143(2013) 780.
- 2. C Thomas, Appl Catal B Environ, 162(2015)454.
- 3. M More P, L Nguyen D, M K Donare, S B Umbarkar, P Granger, C Dujardin, Appl Catal B Environ, 174(2015)145.
- 4. Y Su, B Zhao, W Deng, Fuel, 170(2016)9.
- 5. H Zhou, Y X Su, W Y Liao, F C Zhong, Appl Catal A Gen, 505(2015) 402