# Iso-butanol synthesis from syngas over the alkali metals modified Cr/ZnO catalysts

# Li Tan<sup>1</sup>, Yoshiharu Yoneyama<sup>1</sup>, Guohui Yang<sup>1, 2</sup>, Yisheng Tan<sup>2</sup>, Noritatsu Tsubaki

<sup>1</sup>. Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan. \*E-mail: tsubaki@eng.u-toyama.ac.jp. Tel./Fax: +81-76-4456846

<sup>2</sup>. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China

**Abstract:** The Cr/ZnO catalysts prepared by co-precipitation method were modified by some alkali metals like Li, Na, K and Cs. The effects of alkali metals modification to Cr/ZnO catalysts were investigated in the reaction of iso-butanal direct synthesis from syngas. Among the used alkali metals, the catalytic ability of the K modified catalyst Cr/ZnO-K was better than that of others. Reaction results showed that the CO conversion of Cr/ZnO-K catalyst was 27.39%, with the highest iso-butanol selectivity of 15.58%. The properties of all catalysts were further characterized by BET, XRD, H<sub>2</sub>-TPR, TG and SEM-EDS.

Keywords: iso-butanol synthesis; syngas; non-stoicheiometric spinel Zn<sub>x</sub>Cr<sub>2/3(1-x)</sub>O

# **1. Introduction:**

Iso-butanol is an important basic chemical and widely utilized for producing antioxidants, paint solvents, flavors, synthetic rubber, etc. Besides, it can also be used as additives of petroleum-derived fuels in order to enhance fuel quality [1]. Iso-butanol is a petroleum-derived chemical. Until now, it is obtained mainly through propylene carbonylation. But the productivity of this process can not meet the increasing market demand in the future.

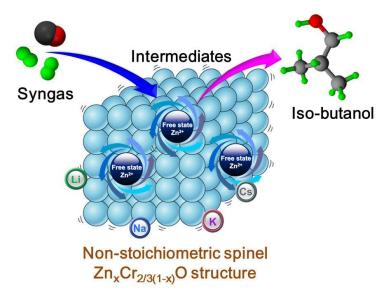



Fig. 1 Direct synthesis of iso-butanol from syngas on the Cr/ZnO-based catalyst

In order to expand iso-butanol production, many new processes have been developed, such as bio-fermentation and coal-based iso-butanol synthesis technology. Previous researchers in Germany develop a coal based methanol and iso-butanol synthesis technology, to which high reaction temperature and pressure are necessary [2]. And the commonly used catalysts for this process are Cr-based catalysts with some other metals as promoter. Iso-butanol production by using the Cr-based catalysts is relatively simple, but the selectivity of iso-butanol is low. In order to promote iso-butanol selectivity, generally more harsh reaction conditions must be adopted.

In this report, we prepare a Cr/ZnO catalyst by co-precipitation method. In order to further enhance iso-butanol selectivity, we select some alkali metals, like Li, Na, K and Cs, as promoters to modify Cr/ZnO catalyst (Fig.1). In addition, the physical properties of the prepared alkali metals modified Cr/ZnO catalysts are characterized by BET, XRD, H<sub>2</sub>-TPR and SEM in detail, by which to further uncover the real active phase of Cr/ZnO catalyst for iso-butanol formation.

## 2. Experimental:

The Cr/ZnO catalyst was prepared through co-precipitation method by mixing the aqueous solution of  $Zn(NO_3)_2$  6H<sub>2</sub>O and Cr(NO<sub>3</sub>)<sub>3</sub> 9H<sub>2</sub>O (Zn:Cr=1:1 in molar) with (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> as precipitant. The prepared Cr/ZnO catalyst was impregnated with the aqueous solution of K<sub>2</sub>CO<sub>3</sub>, Cs<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub> or Li<sub>2</sub>CO<sub>3</sub>. The modified Cr/ZnO catalysts were denoted as Cr/ZnO-Li, Cr/ZnO-Na, Cr/ZnO-K and Cr/ZnO-Cs.

The catalytic reactions were carried out by using a stainless steel fixed-bed reactor loaded with 5 ml catalysts for each test. The catalysts were first reduced using 20% H<sub>2</sub> in Ar at 400 °C for 6 h. After the reduction process, syngas was introduced into the reactor to react. The reaction conditions are as follows: H<sub>2</sub>/CO=2.3, 10 MPa, GHSV=3000 h<sup>-1</sup> and reaction temperature of 400 °C.

### 3. Results and discussion:

All the reaction results, obtained on the pure Cr/ZnO catalyst and alkali metals modified catalysts Cr/ZnO-Li, -Na, -K and -Cs, are given in Table 1. Three alkali metals of Na, K and Cs, rather than Li, can obviously improve the iso-butanol selectivity, as well as the catalyst activity on CO conversion. Among the tested catalysts, the K modified catalyst Cr/ZnO-K shows a better CO conversion (27.39%) and the highest iso-butanol selectivity (15.58%) [3].

| Catalysts | CO Conv. (%) | Products distribution (wt%) |      |                     |                     |                    |
|-----------|--------------|-----------------------------|------|---------------------|---------------------|--------------------|
|           |              | MeOH                        | EtOH | n-PrOH <sup>b</sup> | i-BuOH <sup>b</sup> | C <sub>5</sub> -OH |
| Cr/ZnO    | 12.61        | 83.06                       | 4.46 | 4.94                | 6.01                | 1.53               |
| Cr/ZnO-Li | 11.81        | 91.83                       | 1.41 | 0.94                | 5.63                | 0.19               |
| Cr/ZnO-Na | 28.62        | 77.62                       | 6.58 | 4.00                | 11.09               | 0.71               |
| Cr/ZnO-K  | 27.39        | 77.31                       | 4.17 | 2.24                | 15.58               | 0.7                |
| Cr/ZnO-Cs | 31.93        | 85.88                       | 1.45 | 0.88                | 11.43               | 0.36               |

Table 1 Iso-butanol synthesis on the alkali metals modified Cr/ZnO catalysts <sup>a</sup>

<sup>a</sup> Reaction conditions:  $H_2/CO=2.3$ , 10 MPa, GHSV=3000 h<sup>-1</sup> and 400 °C; The alkali metals loading amount for each catalyst was 3 wt%. <sup>b</sup> n-PrOH means normal propanol and i-BuOH stands for iso-butanol.

#### 4. Conclusion

Combining with the catalysts characterization, the results suggest that the non-stoichimetric spinel of  $Zn_xCr_{2/3(1-x)}O$  in Cr/ZnO catalyst should be the active phase for iso-butanol synthesis from syngas. Some alkali metals modification to the Cr/ZnO catalyst, as presented in this report, can promote the activation of CO and H<sub>2</sub> under the used reaction conditions, whereby to improve catalyst performance on CO conversion and iso-butanol synthesis.

#### References

[1]Cheng Jia, Jiang Chun-bo. Chemical Industry .2007, 25(10): 28-31

[2] Marschner F, Moertel H. G. Hydrocarbon Processing, 1986, 1:65-70

[3]Li Tan, Guohui Yang, Yoshiharu Yoneyama, Yongli Kou, Yisheng Tan, TharapongVitidsantc, NoritatsuTsubaki, Applied Catalysis A: General, 2015, 505, 141 - 149