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Abstract:  

Evolutionary algorithm is a global search optimization algorithm, which is based on Darwin’s theory of 

evolution, to solve optimization problems by selection, heredity and mutation operators. In recent years, it 

has been widely applied in computational simulation of catalytic material structures. 

In our work, we study the specific structures of gold nanomaterial, and simulate the twinning 

boundaries observed in experiments using evolutionary algorithms and reactive force field1 molecular 

dynamics. Many different structures can be obtained. The results are vital to deeply understanding the 

relationship between energies and structures and catalytic activities of such unique materials. 
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1. Introduction  

Twinning is one of the most common crystal defects. During the last several decades, many scientists 

have devoted to studying the unique properties of twinning crystals. Many experimental literatures have 

emerged in the past twenty years, but the theoretical studies about twinning crystals are very limitted. In 

recent years, there are some reports about the investigation of five-fold twinning nanorods. Chen et al.2 have 

performed thorough researches on twinning structures of pentagonal metal nanorods. Experiments3 show that 

gold nanorods grow along [110] direction, with feature of five-fold twinning structure, which is obtained by 

rotating {111} crystal for five times (see Fig. 1). So the twinning boundaries in cross section widen 

obviously, and have a certain angle of about 7.5°. 

 

2. Theoretical  

In our work, we mainly studied twinning boundaries of gold nanorods. In order to correctly obtain 

possible structures of gold twinning boundaries, we performed General Utility Lattice Program (GULP) 

calculations aided by evolutionary algorithm (EA) optimization.  

After halting criterion is achieved, many different structures can be obtained. According to the 

calculated total energies, these optimized structures can be classified, and the lowest-energy structure is 

determined. We set the range of energy difference and cosine distance to screen and extract structures.  

Then we analyze the extracted structures. We use three methods (the Euclidean distance, the cosine 

distance and the quasi-entropy) to describe fingerprint and bond characterization matrix (BCM)4 of a 

structure, thus describe structural (dis)similarity.  

 

3. Results and discussion 

For the gold twinning boundaries, we use USPEX code5 to perform structural evolution with almost 

100 generations, which produces thousands of structures altogether. From the structures in Fig. 2, it is clear 

that the twinning boundaries of five configurations are different. The lowest-energy structure has the most 

ordered atomic arrangement. As the disordered atoms of twinning boundary increase, the energy of the 

structure is also raised, and the structure is less stable. Therefore, according to these different configurations, 

we can conclude the relationship between energy and structure. Moreover, we can predict the catalytic 

activity of twinning boundaries. 
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Figure 1. The theoretical model constructed according to experimental five-fold twinned nanorod.  

 

 

 

 

 

 

 
 

 

Figure 2. The structures of twinning boundaries obtained in an evolutionary run.    

 

 

Table 1. Relative energy and average energy of each atom of five structures. The structure Fig 2a is taken as a reference. 

 

4. Conclusions 

 According to the simulation results and structural analyses, we can preliminarily draw the following 

conclusions: 

First, twinning boundaries are the preferential positions of anisotropic growth. From thermodynamic 

perspective, the atomic arrangement of twinning boundaries always tends to achieve the stable condition 

with the lowest energy. Moreover, with the process of growth, crystals can often adjust the growth rate of 

each facet.  

Second, the atoms in twinning boundaries will be firstly arranged in the close-packed mode to 

maximize local atomic density by contracting towards the interior of nanorods. 
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Model No. Relative energy（eV） Relative average energy of 

each atom (×10
-3

eV/atom) 

1 (Fig. 2a) 0 0 

2 (Fig. 2b) 3.26 2.10 

3 (Fig. 2c) 7.30 4.70 

4 (Fig. 2d) 8.02 5.17 

5 (Fig. 2e) 10.90 7.02 
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