Improvement of N₂O decomposition activity over N₂O-pretreatment CexCo catalysts: the effects of deposited oxygen species from N₂O dissociation

Yanchen You, Huazhen Chang*

School of Environment and Natural Resources, Renming University of China, Renming University of China Beijing 100872, China *Corresponding author: Tel.: +86-10-62512572; E-mail address: chz@ruc.edu.cn (H. Chang)

Abstract: In this work, obvious improvement of N₂O catalytic decomposition activity over Ce-Co-O mixed oxides catalysts was observed. The fresh and N₂O-pretreatment catalysts were tested under specific conditions and characterized by Raman, XPS, H₂-TPR, TPD studies. It was found the doped CeO₂ stored more deposited oxygen species (O*) from N₂O dissociation, facilitating another surface-to-N₂O electron transfer route (from deposited O* to N₂O) leading to the cleavage of N-O bond. N₂O pretreatment at higher temperature resulted in more deposited O*, which accounts for the enhancement of decomposition activity over N₂O-pretreatment Ce-Co-O catalysts.

Keywords: N₂O catalytic decomposition, Ce-Co-O mixed oxides, Oxygen species from N₂O dissociation.

1. Introduction

The direct catalytic decomposition of N_2O is the most promising technology to draw down N_2O emissions [1,2]. The Ce-doped cobalt spinel catalyst showed outstanding catalytic performance with good tolerance to H_2O and O_2 [3]. In our studies, an obvious enhancement of N_2O decomposition activity over N_2O -pretreatment Ce-doped cobalt spinel catalyst was observed unexpectedly. And our conclusion might be generally adoptable to other Ce-doped catalysts and zeolites catalysts.

2. Experimental

The Co₃O₄ and Ce-Co-O mixed oxides (abbreviated as CexCo, where *x* represented the mol% of Ce) were prepared by co-precipitation method. The steady-state reaction conditions were as follows: 1000 ppm N₂O, He balanced, 300 ml/min gas flow rate, 0.2 g catalyst, GHSV of 80000 h⁻¹. The pretreatment of N₂O was conducted at 500 °C for 1 h at the same conditions of steady-state reaction. XPS analysis was performed on an electron spectrometer (ESCALab220i-XL, VG Scientific). H₂-TPR profiles were recorded on a ChemiSorb 2720 TPx chemisorption analyzer in 10% H₂/Ar (30 mL/min) atmosphere.

3. Results and discussion

Fig. 1 showed that the decomposition activity of post-pretreatment CexCo catalysts was obviously enhanced, T_{90} of Ce10Co catalyst decreased from 359 to 312 °C. But hardly any enhancement was observed for Co₃O₄. A trend that the enhancement of decomposition activity was positively related to the doping amount of CeO₂ was concluded.

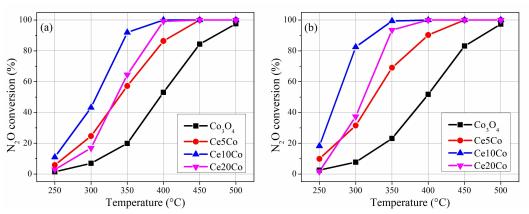


Figure 1. N₂O decomposition activity of CexCo and Co₃O₄ catalysts, (a) fresh catalysts; (b) N₂O-pretreatment catalysts.

As shown in Fig 2(a), the band at around 531.0 and 529.7 eV could be ascribed to surface adsorbed oxygen species (O_{α}) and lattice oxygen (O_{β}), respectively [4]. After N₂O pretreatment, the relative content of O_{α} over Co₃O₄ changed little. But the relative content of O_{α} over Ce10Co increased from 48.8% to 53.6%. It suggested that N₂O pretreatment would deposit specific adsorbed oxygen species on Ce10Co and the doping of CeO₂ helped store more such oxygen species. The catalytic decomposition of N₂O could be described by the following reaction [1,2].

$$N_2 O + * \rightarrow N_2 + O * \tag{1}$$

$$O^* + O^* \Leftrightarrow O_2 + 2^* \tag{2}$$

$$N_2 O + O^* \rightarrow N_2 + O_2 + * \tag{3}$$

The removal of surface adsorbed oxygen species (O*) from N₂O dissociation is commonly recognized as the rate-determining step. In the initial stage of catalytic decomposition of N₂O, reaction 1 is faster than reaction 2 due to the abundant active sites. Hence, the deposited oxygen species detected by XPS generated from the dissociation of N₂O. The reduction peak below 200 °C in Fig. 2(b) is able to characterize deposited oxygen species (O*) [5]. It was clear that the peak area increased significantly after N₂O pretreatment, which was due to the accumulation of O*. H₂-TPR results further revealed that the doping of CeO₂ could offer more storage capacity for deposited O*.

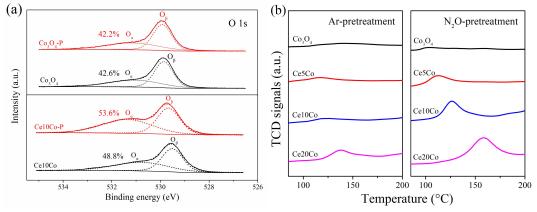


Figure 2. (a) O 1s XPS spectra of fresh, N₂O-pretreatment Co₃O₄ and Ce10Co catalysts; (b) H₂-TPR profiles (below 200 °C) of Ar-pretreatment and N₂O-pretreatment CexCo catalysts.

It was also proved that pretreatment at higher temperature would lead to more formation of deposited O*. After being cooled down to lower temperature, there are still massive O* remained on the surface. The remaining O* availed surface-to-N₂O electron transfer route (from deposited O* to N₂O) leading to N₂O dissociation (reaction 3), thus promoting the N₂O decomposition activity. In addition, the long-term test showed that the deposited O* would be consumed completely in a dozen hours at 350 °C.

4. Conclusions

The doping of CeO₂ improved the N₂O decomposition activity and oxygen storage capacity of Co₃O₄. Surface adsorbed oxygen species (O^{*}) generated from the dissociation of N₂O would deposit on the surface of CexCo. With the accumulation of O^{*}, the reaction of O^{*} with gaseous N₂O would occur substantially over CexCo. Pretreatment of N₂O at higher temperature results in more deposited O^{*}, which accounts for the enhancement of decomposition activity over N₂O-pretreatment CexCo.

References

- 1. M. Konsolakis, ACS Catalysis 5 (2015) 6397-6421.
- 2. K.Q. Tran, P. Kilpinen, N. Kumar, Applied Catalysis B: Environmental 78 (2008) 129-138.
- 3. L. Xue, C. Zhang, H. He, Y. Teraoka, Applied Catalysis B: Environmental 75 (2007) 167-174.
- 4. Y. You, H. Chang, T. Zhu, T. Zhang, X. Li, J. Li, Molecular Catalysis 439 (2017) 15-24.
- 5. L. Xue, C. Zhang, H. He, T. Yasutake, Applied Catalysis B: Environmental, 75 (2007) 167-174.