Complete oxidation of formaldehyde on Pd/TiO₂ catalyst at room temperature: the effect of temperature reduction

Yaobin Li^{a,} Changbin Zhang^b, Hong He^{a,b*}

^a Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

^b State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China

*Corresponding author: Fax: 86-592-6190990; E-mail: hhe@iue.ac.cn

Abstract: High temperature reduction generally induces the sintering of supported noble metals, therefore resulting in a negative effect on their performance. Here, we show that high temperature reduction was able to dramatically increase the activity of Pd/TiO₂ for ambient HCHO oxidation. We prepared a Pd/TiO₂ catalyst and pre-reduced it with H₂ at low temperature (300 °C) and high temperature (450 °C), respectively, and then tested the activity for HCHO oxidation at ambient temperature. The Pd/TiO₂-450R catalyst showed a much better performance than Pd/TiO₂-300R at room temperature, which can be attributed that high temperature reduction could induce the strong metal-support interaction (SMSI), decreasing the surface Pd particle size by partially encapsulating and trapping Pd clusters with TiO₂, and also could produce more oxygen vacancies, beneficial to the activation of O₂ and formation of surface OH groups. **Keywords:** formaldehyde, catalytic oxidation, Pd/TiO₂

1. Introduction

Catalytic oxidation of Formaldehyde (HCHO) to CO₂ at ambient conditions is of great interest for indoor HCHO purification.[1] Most recently, it was found that Pd based catalysts exhibited the excellent activity for HCHO oxidation at room temperature and that their activities were closely related to the reduction treatment [2], alkali metal promoter [3] and morphology of support [4]. According to the previous works, it was reported that the reduction treatment, especially reduction temperature, have great effects on the activity of Pd based catalysts for some reactions. [5, 6] Therefore, it is worth to explore the influence of reduction temperature on Pd/TiO₂ catalyst for HCHO oxidation. In this study, Pd/TiO₂ catalyst was prepared and pre-reduced at low temperature (300 °C) and high temperature (450 °C) by H₂ before tested for HCHO oxidation at ambient temperature. Based on the results of Characterizations, the mechanism of promotion effect of high temperature reduction are discussed and elucidated.

2. Experimental

1 wt. % Pd/TiO₂ were prepared by co-impregnation. Before activity test and characterization, the samples were reduced with H₂ at 300 °C or 450 °C for 1 h. Specific surface area (S_{BET}), CO pulsed chemisorption, X-ray photoelectron spectroscopy (XPS), High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and HCHO temperature program desorption (HCHO-TPD) were carried out to elucidate the influence of high temperature reduction.

3. Results and discussion

Figure 1 showed that compared to Pd/TiO₂-300R catalyst, the Pd/TiO₂-450R catalyst possessed an excellent performance of HCHO oxidation at room temperature. According to **Table 1**, Pd dispersion of Pd/TiO₂-450R decreased, compared to that of Pd/TiO₂-300R, which may be attributed to agglomeration of Pd particles. However, based on the result of HAADF/STEM (as showed in **Table 1**), the Pd particle size on Pd/TiO₂-450R catalyst reversely decreased. This kind of abnormal phenomenon should be ascribed to the encapsulation of Pd particle by the reduced TiO₂ (TiO_{2-x}) during the reduction treatment which facilitates the electron transfer from the TiO_{2-x} to the metallic Pd and further can enhance O₂ adsorption. Meanwhile, the Pd/TiO₂-450R catalyst possessed more Ti-OH species than Pd/TiO₂-300R, which may be due to oxygen

vacancies formed during high temperature reduction enhanced H_2O dissociation. The presence of abundant surface OH groups could facilitate O_2 activation and diffusion and also accelerate the partial oxidation of HCHO to formate and also could directly react with formate species to final CO_2 and H_2O at ambient temperature which can be demonstrated from the result of HCHO-TPD (in **Figure 2**). As shown in **Figure 2a**, abundant CO and CO₂ and a little of H_2 was desorbed on Pd/TiO₂-300R, while only the CO₂ desorption was observed on the Pd/TiO₂-450R catalyst, indicating that there may be a more effective pathway for the direct oxidation of surface formate on Pd/TiO₂-450R catalyst.

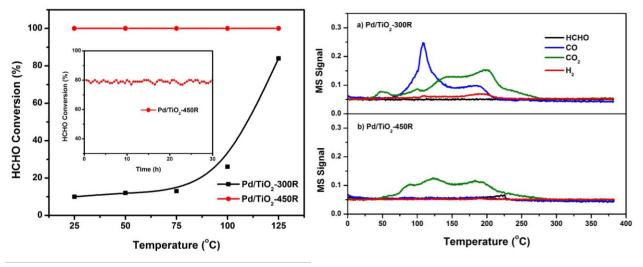


Figure 1. HCHO conversion over Pd/TiO2 catalysts.

Figure 2. HCHO-TPD of Pd/TiO2 catalysts

samples	D _{CO} ^{<i>a</i>} (%)	<i>d</i> _s ^b (nm)	Ti-OH ^c (%)
Pd/TiO ₂ -300R	21.4	4.9	14.9
Pd/TiO ₂ -450R	16.9	3.8	23.3

Table 1. Pd dispersion (DCO), Pd mean particle size (ds) and relative amount of surface OH groups (Ti-OH) of Pd/TiO₂ samples.

^a Pd dispersion measured with CO pulse chemisorption; ^b Pd mean particle size from HAADF-STEM;

^c Concentration of Ti-OH calculated from the XPS of O 1s.

4. Conclusions

The SMSI induced by high temperature reduction could partially encapsulate the Pd particles, resulting in a smaller particle size on the catalyst surface, and subsequently promoting the activation of O_2 . In addition, the partial reduction of TiO₂ at high temperature resulted in more oxygen defects and further enhanced the dissociation of H₂O to form abundant surface OH groups. Therefore, the Pd/TiO₂-450R catalyst exhibits much higher activity than Pd/TiO₂-300R for HCHO oxidation at room temperature.

References

- 1. Quiroz Torres, J., etc. Chemsuschem 2013, 6 (4), 578-92;
- 2. Huang, H. B.; Leung, D. Y. C., ACS Catal. 2011, 1 (4), 348-354;
- 3. Zhang, C. B.; Li, Y. B.; He, H., Environ. Sci. Technol. 2014, 48 (10), 5816-5822;
- 4. Imamura, S.; Uematsu, Y.; Utani, K.; Ito, T., Ind. Eng. Chem. Res. 1991, 30 (1), 18-21
- 5. Bracey, J.D.; Burch, R., J. Catal. 1984, 86.
- 6. Huang, S. Y.; Zhang, C. B.; He, H., J. Environ. Sci. 2013, 25 (6), 1206-1212.