SO₂ tolerance of the CeO₂-TiO₂ catalyst for selective catalytic reduction of NO_x by NH_3

Hongtai Zhu, <u>Liyun Song</u>, Mengqi Yin, Jie Cheng, Yanming Sun, Jian Li, Wenge Qiu, Hong He*

Key Laboratory of Beijing on regional Air Pollution Control, Beijing Key laboratory for Green Catalysis and Separation, Beijing University of Technology, 100124, China *Corresponding author: Hong He, Fax number: 8610-67392080, E-mail address:<u>hehong@bjut.edu.cn</u>

Abstract: Ceria-based (CeO₂-TiO₂) catalysts were prepared by dry ball milling method with Ce₂(C₂O₄)₃ as precursor and TiO₂ was chosen as a carrier. The prepared CeO₂-TiO₂ catalyst was treated in reaction atmosphere with addition of 1500 ppm SO₂ in 40 and 60 h, respectively. The performances of selective catalytic reduction (SCR) of NO with NH₃ as the reductant over the fresh and treated samples were investigated.

Keywords: CeO₂-TiO₂, selective catalytic reduction, SO₂, ball milling.

1. Introduction

The selective catalytic reduction process (SCR) of NO_x with ammonia as reductant was commonly recognized as an available method to eliminate NO_x in flue gasses. Ceria based catalyst has been awarded widely attentions and investigated for SCR in the nearly decades [1]. In this process, the catalyst preparation is a relevant issue to meet the future need, which depended on the activity and economy. As a simple method, dry ball milling was selected to fabricate CeO₂-TiO₂ catalysts nearly [2]. It was found that the catalysts prepared by ligand-assisted ball milling exhibited high NH₃-SCR activities due to the interaction between cerium ions and ligand molecules resulting in good dispersion, a high Ce³⁺ ratio and high reducibility of cerium species. Usually, the flue gas contains sulfur. As CeO₂-TiO₂ materials used as SCR catalyst for NO_x elimination, the performance and SO₂ resistance cannot neglected.

2. Experimental

The CeO₂-TiO₂ catalysts were synthesized from a cerium precursor (Ce₂(C₂O₄)₃) and titania (TiO₂) by a dry ball milling protocol in room temperature, which was a two-step process, including the milling step and the calcination step of the milled mixture. The details were similar to that reported [2]. The sample after calcination was labelled as CeO₂-TiO₂-fresh, and the samples after used in the flue gas 40 h and 60 h were labelled as CeO₂-TiO₂-40h and CeO₂-TiO₂-60h, respectively.

X-ray photoelectron spectra (XPS) were performed on an X-ray photoelectron spectrometer (Thermo Fisher, ESCALAB 250 Xi), using monochromatic Al Ka radiation (1486.6 eV) operating at an accelerating power of 15 kW.

The NH₃-SCR activities of the samples for NO selective catalytic reduction were evaluated in a quartz micro-reactor (id = 8 mm) at atmospheric pressure. The flow rate of reactant mixture of 1000 ppm NO, 1000 ppm NH₃, 6% O₂, 175 ppm SO₂, 6 % H₂O, He balance, and the space velocity was 30,000 h⁻¹.

3. Results and discussion

The NH₃-SCR activities over the three samples are investigated and the results are summarized in Fig. 1. It shows that the NO conversions over the CeO₂-TiO₂-fresh, CeO₂-TiO₂-40h and CeO₂-TiO₂-60h samples increased as the reaction temperature rising and reached their maximum at ca. 300, 350 and 350 °C, respectively, implying that the deactivation of CeO₂-TiO₂-fresh in the flue gas in 40 h. CeO2 may reacted with SO₂ in the process to give cerium sulfate [3]. One can also find that the similar activity was presented in Fig. 1, which showed that after the process of deactivation in the flue gas, the activity could be hold in a relative stable level.

However, as the temperature increased, higher than 350 °C, NO conversions over the three samples were so close (more than 95%). It exhibited that the transition from CeO₂ to cerium sulfate inhibited the reduction of NO in the relative low temperature (lower than 350 °C).

Figure 1. NO conversion over the samples CeO₂-TiO₂-fresh, CeO₂-TiO₂-40h, CeO₂-TiO₂-60h Reaction condition: 1000 ppm NO, 1000 ppm NH₃, 6% O₂, 175 ppm SO₂, 6 % H₂O, He balance, GHSV: 30,000 h⁻¹

In order to investigate the composition and the surface atomic concentrations of the samples, the XRF and XPS characterizations were carried out and the result was summarized in Table 1. For the fresh sample, only 0.41% SO₃ (calculated as oxide) was detected, and after reaction for 40 h, the SO₃ content was increased to 6.32%, implying that sulfate were formed in the reaction process. When prolong the reaction period to 60 h, the SO₃ content of CeO₂-TiO₂-60h was similar as that of CeO₂-TiO₂-40h.

The surface Ce concentrations over the fresh sample decreased from 2.6% to 1.4%, and the S concentrations increased from 1.2% to 4.2% after the reaction for 40 h, suggesting the sulfate existed in the surface. When the reaction time prolonged, the surface atomic concentration over the catalyst changed little.

Samples	Component content (wt%)			Surface atomic concentration (%)		
	TiO ₂	CeO ₂	SO ₃	Ce	0	S
CeO ₂ -TiO ₂ -fresh	67.5	31.8	0.41	2.6	63.6	1.2
CeO ₂ -TiO ₂ -40h	61.5	31.8	6.32	1.4	65.3	4.2
CeO ₂ -TiO ₂ -60h	62.1	31.7	5.83	1.4	64.9	3.9

Table 1. Compositions and the surface atomic concentrations over of the samples measured by XRF and XPS, respectively.

4. Conclusions

From the results of performance evaluation, one can realize that the CeO₂ reacted with SO₂ to give cerium sulfate in the flue gas, which inhibited the reduction of NO by NH₃ in the low temperature (lower than 350 $^{\circ}$ C). As the same time, after a period reaction, the activity of CeO₂-TiO₂ catalyst could maintain in the flue gas containing SO₂ and H₂O.

Acknowledgement

We gratefully acknowledge the financial support from the National Key R&D Program of China (No. 2017YFC0210303-02) and the National Natural Science Foundation of China (21577005).

References

- 1. Y. Shu, T. Aikebaier, X. Quan, S. Chen, H.T. Yu, Appl. Catal. B: Environ. 150–151 (2014) 630.
- 2. J. Yan, W. Qiu, L. Song, Y. Chen, Y. Su, G. Bai, G. Zhang, H. He, Chem. Commun., 53 (2017) 1321.
- 3. L. Song, J. Chao, Y. Fang, H. He, J. Li, W. Qiu, G.Zhang. Chem. Eng. J., 303 (2016) 275.