Z-scheme overall water splitting on reduced graphene oxide modified Rh/K4Nb6O17 nanosheets photocatalyst

Hsin-Yu Lin*, Jin-Xiong Yang

Department of Materials Science and Engineering, National Dong Hwa University, Hualien, 97401, Taiwan *Hsinyu@gms.ndhu.edu.tw

Abstract:

In this study, we develop a new Z-scheme photocatalysis system for overall water splitting which consists of reduced graphene oxide (RGO) modified Rh/K₄Nb₆O₁₇ nanosheets for H₂ evolution, Pt/WO₃ for O₂ evolution, and I⁻/IO₃⁻ for an electron mediator under UV light irradiation. The H₂ evolution photocatalyst, Rh/K₄Nb₆O₁₇ nanosheets with a slit like framework, was prepared by exfoliation of and proton exchange reaction. Pt/WO₃ prepared via incipient-wetness impregnation method was used as O₂ evolution photocatalyst. The results show that RGO significantly influenced the photocatalytic activity. The combination of RGO and Rh/K₄Nb₆O₁₇ nanosheets with Pt/WO₃ achieves a high H₂ evolution rate (7039 µmol g⁻¹ h⁻¹) and O₂ evolution rate (3289 µmol g⁻¹ h⁻¹) at pH=12 in 6mM NaI solution.

Keywords: Rh/K₄Nb₆O₁₇ nanosheets, reduced graphene oxide, Z-scheme photocatalytic water splitting, hydrogen production

1. Introduction

Developing a photocatalyst system to generate hydrogen from water is a topic of great interest for fundamental and practical importance [1]. In this study, hydrogen production by a new Z-scheme photocatalysis water splitting system was examined over RGO modified Rh/K₄Nb₆O₁₇ nanosheets and Pt/WO₃ photocatalysts for H₂ evolution and O₂ evolution with I⁻/IO₃⁻ electron mediator under UV light irradiation. The Rh/K₄Nb₆O₁₇ nanosheets photocatalysts were prepared by exfoliation of and proton exchange reaction, which lead to a slit like framework of K₄Nb₆O₁₇. Pt nanoparticles were deposited on WO₃ surface by incipient-wetness impregnation method to improve activity of photocatalytic O₂ evolution. Our results show that I⁻ concentration and pH of reaction solution significantly influenced the photocatalytic activity. The combination of 5wt% of RGO and Rh/K₄Nb₆O₁₇ nanosheets with Pt/WO₃ achieves a high H₂ evolution rate (7039 µmol g⁻¹ h⁻¹) and O₂ evolution rate (3289 µmol g⁻¹ h⁻¹) at pH=12 in 6mM NaI solution.

2. Experimental (or Theoretical)

The preparation of $K_4Nb_6O_{17}$ catalysts was accomplished by a two-step solid-state reaction method using K_2CO_3 , and Nb_2O_5 with purities of 99.99%. The well-mixing K_2CO_3 and Nb_2O_5 (molar ratio 2.2: 3) were reacted in an aluminum crucible in air at 700°C for 2h then 1100°C for 5h. Proton-exchange $K_4Nb_6O_{17}$ (referred as $H_3KNb_6O_{17}$) was synthesized by suspending $1.5g K_4Nb_6O_{17}$ in 150 cm³ 1M HCl solution for 3 days at room temperature, then washed and separated by centrifugation and dried at 60 °C overnight. The exfoliation of $H_3KNb_6O_{17}$ was carried out in an aqueous solution of tetrabutylammonium hydroxide (TBAOH). About 0.5g of $H_3KNb_6O_{17}$ and desired amount of NaRhCl₆ was suspended in 15ml of 6 wt% TBAOH aqueous solution at room temperature and stirred for 2 days. Subsequently, 100 ml of a 2M KOH was added to the solution and stirred for 1h. Then, the sample was washed several times with deionized water to remove residual TBA, separated by centrifugation and dried at 80 °C overnight. The final product, 1.5wt% Rh/K₄Nb₆O₁₇ nanosheets, was denoted as Rh-NSK.

Graphite oxide (GO) was prepared by graphite power (Showa) using modified Hummers' method [2]. About 0.5g graphite powder and 2.5g NaNO₃ was added to 115 ml 18M H_2SO_4 in an ice-bath. Then, 15g KMnO₄ was added to the solution under stirring. 230ml of deionized water was added to the mixture which was stirred at 35°C for 4h. After that, 360 ml of water was introduced to the suspension and stirred for 1 h. The reaction was terminated by adding 12ml H_2O_2 under stirring. Finally, the product was washed 3 times with 500ml deionized water. A GO suspension was achieved through a simple centrifugation.

The Pt/WO_3 was by loading 0.5wt% Pt on the photocatalyst powders using an aqueous H_2PtCl_6 solution. The WO₃ were used as purchased from Alfa Aesar. Following the impregnation, the samples were dried at 80 °C overnight. The Pt species would be reduced to metallic Pt nanoparticles during photocatalytic water splitting, therefor no further calcination was required.

The characterization methods included Powder X-ray diffraction (XRD, Cu-K α radiation, λ = 1.54178Å), UV-vis (Varian Lary 5E diode array spectrometer), Scanning Electron Microscopy (SEM, Hitachi S-3500H) and transmission electron microscopy (TEM, JEOL JEM-2000FX II microscope). The photocatalytic reaction was carried out in a reactor equipped with an inner irradiation quartz cell with a cooling water jacket. A 400 W medium pressure halide lamp (Phillips HPA400, $\lambda_{max} = 360$ nm, irradiation 150 mW/cm²) was mounted inside the quartz cell. The photocatalytic H₂ evolution and O₂ evolution of water splitting was performed in 550 ml aqueous 6mM NaI solution containing about 0.2 g Rh-NSK, Pt/WO₃ and desired amount of RGO (0.002g – 0.02g) at 43 °C. The pH value of reaction solution was adjusted to pH= 12 by NaOH. The gas product was analyzed by a gas chromatography (China Gas Chromatography 9800) with a packed column (MS-5A, 3.5m in length) and thermal conductivity detector.

3. Results and discussion

The appurtenance diffraction peak at 2Θ = 14.8° in Fig. 1(a) and no diffraction peak at 2Θ = 26.5° was observed indicated that that GO was synthesized successfully. The XRD pattern showed in Fig. 1(c) and (d) indicated K₄Nb₆O₁₇ nanosheets with Rh nanoparticles and GO cocatalyst remained single phase K₄Nb₆O₁₇ (JCPDS 76-0977) crystal structure. No reflection peak corresponded Rh or GO appeared in XRD spectra of Rh-NSK or 1wt% GO/Rh-NSK samples, suggesting that the cocatalysts were well dispersed and difficult to be detected by XRD. Furthermore, the Rh-NSK or 1wt% GO/Rh-NSK samples the much broad diffraction peak (040) at about 2Θ = 10° than the bulk K₄Nb₆O₁₇ (Fig. 1(b)) indicated that the smaller crystalline size of K₄Nb₆O₁₇ nanosheets.

Fig. 2 shows the UV-vis spectra of the Rh-NSK and GO modified Rh-NSK samples. The Rh-NSK catalyst was orange color with a band gap about 3.54 eV estimating form UV-vis spectra (Fig. 2(a)). Fig. 2(b) showed the UV-vis spectra of GO which exhibited a brown color in water suspension and had a band gap about 4 eV, this result was well consisted with Yeh et al [3]. The band gap of GO modified Rh-NSK samples was similar to Rh-NSK with an increase absorption in long wavelength (Fig. 2(b) and (c)).

The TEM images of 5wt% GO/Rh-NSK photocatalysts shown in Fig. 3 revealed clearly that Rh nanoparticles (2~9 nm) were well dispersed on the $K_4Nb_6O_{17}$ nanosheets surface which was curved like a tube roll and well attached with a GO nanosheets with an larger size of 1-2 μ m.

Fig.1 XRD specta of (a) GO (b) $K_4Nb_6O_{17}$ (c) Rh-NSK (d) 3 wt% GO/Rh-NSK

Fig.2 UV-vis specta of (a) Rh-NSK (b) 1 wt% GO/Rh-NSK (c) 3 wt% GO/Rh-NSK and (d) GO

Fig.3 TEM images of (a) 5 wt% GO/Rh-NSK and (b) enlarged TEM image of 5 wt% GO/Rh-NS

Table 1. Photocatalytic H ₂ evolution rates and on O ₂ evolution rates O	GO/Rh-
NSK and Pt/WO ₃ photocatlysts	

Catalyst	H ₂ (µmole h ⁻¹ g ⁻¹)	O ₂ (µmole h ⁻¹ g ⁻¹)
Rh-NSK	2929	997
Rh-NSK - Pt/WO ₃	4240	1622
5 wt% GO/Rh-NSK	3500	1312
10 wt% GO/Rh-NSK	3926	1243
1 wt% GO/Rh-NSK -	3060	1571
Pt/WO ₃		
3 wt% GO/Rh-NSK -	6098	2459
Pt/WO ₃		
5 wt% GO/Rh-NSK -	7039	3289
Pt/WO ₃		
10 wt% GO/Rh-NSK	6867	4079
- Pt/WO ₃		

As shown in Table 1, the photocatalytic activity of GO/Rh-NSK-Pt/WO₃ was significantly influenced by the loading amount of GO. The results demonstrated that Rh-NSK photocatalyst could produce H_2 and O_2 at the same time, the reaction rate of O_2 evolution was limited to the valance band edge of Rh-NSK where the O_2 evolution rate was lower than H_2 evolution rate. The O_2 evolution rate was increase by introducing GO to Rh-NSK surface, however, the H_2 evolution rate was slightly decreased. This might attributed to the photo excited electron transferred from Rh-NSK to GO and O_2 evolution rate was increased by the enhanced charge separation.

On the other hand, the H₂ evolution rate was decreased by the competition reaction of $IO_3^- + e^- > I^-$ on GO surface. With combination of Pt/WO₃, the photocatalytic GO/Rh-NSK - Pt/WO₃ was significantly improved. The combination of 5wt% of RGO and Rh/K₄Nb₆O₁₇ nanosheets with Pt/WO₃ achieved a very high H₂ evolution rate (7039 µmol g⁻¹ h⁻¹) and O₂ evolution rate (3289 µmol g⁻¹ h⁻¹) at pH=12 in 6mM NaI solution which was very close to the stoichiometric ratio of water.

4. Conclusions

Our results show that the photocatalytic activity of GO/Rh-NSK-Pt/WO₃ was significantly influenced by the loading amount of GO. The combination of 5wt% of RGO and Rh/K₄Nb₆O₁₇ nanosheets with Pt/WO₃ exhibited a very high H₂ evolution rate (7039 μ mol g⁻¹ h⁻¹) and O₂ evolution rate (3289 μ mol g⁻¹ h⁻¹) at pH=12 in 6mM NaI solution.

References

- [1] P. Zhou, J. Yu, M. Jaroniec, Advanced Materials. 26 (2014) 4920.
- [2] W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339.
- [3] T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H. Teng, Advanced Functional Materials. 20 (2010) 2255.