Preparation of gallium oxide photocatalysts with various crystalline structures and their Ag loading effects on the carbon dioxide reduction with water

<u>Tomoko Yoshida,</u>^{a*} Yu Kawaguchi,^b Masato Akatsuka,^c Muneaki Yamamoto^c and Akiyo Ozawa^{b,d}

^aAdvanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585, Japan ^bApplied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 558-8585, Japan ^cMateriala, Physica and Energy Engineering, Craduate School of Engineering, Nagoya University, Nagoya, 464, 8603

^cMaterials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan

^dCorporate Research Laboratories, Research & Development Division, Sakai Chemical Industry, Co., Ltd., 590-0815, Japan

*Tomoko Yoshida: +81-6-6605-3627, tyoshida@ocarina.osaka-cu.ac.jp

Abstract: Ga_2O_3 prepared by calcination of a gallium nitrate showed high activity for CO_2 reduction with water to produce CO, however, the activity decreased by Ag loading. On the other hand, CO production was enhanced by Ag loading on commercially available Ga_2O_3 (CA- Ga_2O_3). The crystalline structures of the Ga_2O_3 and CA- Ga_2O_3 were coexistence of γ , β - phases of Ga_2O_3 and single β -phase of Ga_2O_3 , respectively. The crystalline structure of CA- Ga_2O_3 was maintained after Ag loading with various methods, while that of the prepared Ga_2O_3 changed. The CO production activity increased by Ag loading depended on the crystalline structure of Ga_2O_3 supports.

Keywords: Ga₂O₃ photocatalyst, CO₂ reduction with water, Ag loading effects

1. Introduction

Development of photocatalysts for CO_2 reduction with water might provide a solution for both the storage of usable chemicals and the global warming problem. Gallium oxide (Ga₂O₃) photocatalysts has been the focus of attention, because it can convert CO_2 and water into CO, H₂, and O₂ under UV light irradiation.¹ Recently, we succeeded to prepare a highly active Ga₂O₃ photocatalyst for CO₂ reduction. On the other hand, it was reported the activity for CO production was enhanced by silver loading on the metal oxide photocatalysts.²⁻⁵ In the present study, for further improvement in the CO production, we prepared silver loaded Ga₂O₃ by various methods and investigated the effects of the silver loading on the crystalline structures and photocatalytic activities of the prepared Ga₂O₃.

2. Experimental

Ga₂O₃ was prepared by dissolving a Ga(NO₃)₃·8H₂O powder in a distilled water, followed by drying and calcination in air at 823 K for 4 h. Ag/Ga₂O₃ (IMP) was prepared by impregnation of Ga₂O₃ powder with an aqueous solution of AgNO₃, followed by drying and calcination in the air at 673 K for 4 h. An aqueous AgNO₃ solution was also used for Ag photodeposition on Ga₂O₃ under UV light irradiation (3.5 mW/cm²) for 3 h (Ag/Ga₂O₃ (PD)). In the preparation of Ag/Ga₂O₃ (PM), nano-sized Ag colloids were physically mixed with Ga₂O₃ and calcined for 1 h in air at 523 K. Ag/CA-Ga₂O₃ (IMP), Ag/CA-Ga₂O₃ (PD) and Ag/CA-Ga₂O₃ (PM) samples were prepared by loading of Ag on commercially available Ga₂O₃ powder (Kojundo Chemical Laboratory Co. Ltd purity 99.99 %) with the same methods mentioned above. The amount of Ag loading was 0.1 wt% for all the samples.

The photocatalytic reduction of CO_2 was conducted in a specially designed gas-liquid-solid three phase reactor. Powder X-ray diffraction (XRD) patterns were recorded by a MiniFlex600 using Cu K α as the radiation source. XANES measurements were carried out at the beam line 6N1 at Aichi Synchrotron Radiation Center.

3. Results and discussion

Fig. 1 (A) shows CO production rate for each sample. The prepared Ga_2O_3 showed the highest photocatalytic activity for CO production, however the activity decreased by the Ag loading and the deactivation was significant for Ag/Ga₂O₃ (PM). To investigate the chemical states of loaded Ag species, we carried out Ag L₃-edge XANES measurements. XANES features of all Ag loaded Ga_2O_3 samples were broad and fundamentally similar to that of an Ag foil, suggesting the formation of small metallic Ag nanoparticles. Therefore, we concluded that the difference in CO production rate among these Ag loaded Ga_2O_3 samples was not derived from the difference in the chemical state of Ag co-catalysts.

As shown in Fig. 1 (B), XRD measurement for the prepared Ga₂O₃ exhibited the crystalline structure of the coexistence of β - and γ -phase Ga₂O₃. Diffraction peaks for Ag/ Ga₂O₃ (IMP) were assigned to mixed phases of α -, β - Ga₂O₃, and those for Ag/Ga₂O₃ (PD) to mixed phases of β -, γ - Ga₂O₃ and GaOOH (2). These results suggested that lower CO production for Ag/Ga₂O₃ (IMP) and Ag/Ga₂O₃ (PD) was caused by the changes in crystalline structure. On the other hand, the crystalline structure of Ag/Ga₂O₃ (PM) maintained that of Ga₂O₃. In addition, there were no remarkable difference in the surface area and the amount of chemisorbed CO₂ among Ga₂O₃ and Ag/Ga₂O₃ (PM). In-situ FT-IR measurements suggested that surface chemical state of the Ga₂O₃ had changed by the Ag loading process and promoted the formation of the other CO₂ adsorbates not used for CO production.

Figure 1. (A) CO production rates after 5 h for CO₂ reduction tests over prepared samples. (B) X-ray diffraction patterns of (a) Ag/Ga₂O₃ (IMP), (b) Ag/Ga₂O₃ (PD), (c) Ag/Ga₂O₃ (PM) and (d) Ga₂O₃.

4. Conclusions

In summary, the coexistence of γ - and β -phase Ga₂O₃ showed the high activity for CO production in the photocatalytic CO₂ reduction with water under UV light irradiation. However, the CO production activity decreased after Ag loading with impregnation and photodeposition methods probably due to the change in the original crystalline structure of the Ga₂O₃. The photocatalytic deactivation of the Ga₂O₃ after Ag loading with physically mixed method would be caused by the surface structural change of the Ga₂O₃ since the formation of CO₂ adsorbates not used for CO production increased.

On the other hand, the crystalline structure of β -Ga₂O₃ was maintained and the activity of β -Ga₂O₃ for CO production increased by Ag loading. From these results, it was revealed that the CO production activity increased by Ag loading depended on the original crystalline structures of Ga₂O₃. In addition, the Ga₂O₃ with mixed phases of γ - and β - not loaded with Ag showed much higher activity than all the Ag loaded Ga₂O₃ samples.

References

- 1. M. Akatsuka, T. Yoshida, N. Yamamoto, M. Yamamoto, S. Ogawa, S. Yagi, J. Phys: Conference Series, 712 (2016) 012056.
- 2. K. Koci, K. Mateju, L. Obalova, S. Krejcikova, Z. Lacny, D. Placha, L. Capek, Appl. Catal. B: Environ. 96 (2010) 239.
- 3. K. Iizuka, T. Wato, Y. Miseki, K. Saito and A. Kudo, J. Am. Chem. Soc. 133 (2011) 20863.
- N. Yamamoto, T. Yoshida, S. Yagi, Z. Like, T. Mizutani, S. Ogawa, H. Nameki, H. Yoshida, e-J. Surf. Sci. Nanotech. 12 (2014) 263.
- 5. M. Yamamoto, T. Yoshida, N. Yamamoto, T. Nomoto, A. Yamamoto, H. Yoshida, S. Yagi, J. Phys: Conference Series, 712 (2016) 012074.