Synthesis of Ni₅P₄ as cocatalyst for promoting photocatalytic H₂ production

Sun Zhichao,^a Wang Yao,^a Yu Zhiquan,^a Wang Anjie^{a*}

^a State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China *Corresponding author: 86-411-84986121, ajwang@dlut.edu.cn

Abstract: The Ni_5P_4 nanoparticle was prepared through an annealing method using an inorganic phosphorus source, which is used as suitable cocatalysts in photocatalytic hydrogen generation. The results demonstrated that Ni_5P_4 can be utilized as electron cocatalysts to markly boost the visiable-light H₂ generation over g-C₃N₄ semiconductor. Thus, Ni_5P_4 was shown to be efficient cocatalysts that can replace noble metals as low-cost photocatalytic H₂ production. Significantly, no catalyst degradation is seen in the recycle application. **Keywords:** Ni_5P_4 , g-C₃N₄, hydrogen generation.

1. Introduction

Photocatalytic water splitting into hydrogen has received significant attention as a renewable and environmentally friendly method to solve energy crisis. Metal-free g-C₃N₄, an n-type semiconductor with appropriate bandgap and conduction band, is widely used as a photocatalyst to produce H₂ by splitting water¹. However, the fast recombination rate of photoinduced electron-hole pairs still leads to inefficient photocatalytic performance². It is generally believed that loading of a cocatalyst on an active substrate is essential for the realization of efficient photocatalytic hydrogen production³. Transition metal phosphide offers exciting opportunities to promote charge separation of g-C₃N₄ due to the low-cost and easy to obtain⁴.

2. Experimental

First, the Ni–P precursor was synthesized as follow. 0.5 g NiCl₂ 6H₂O, 2.44 g NaH₂PO₂ H₂O, and 0.29 g NaAc were dissolved in deionized water to obtain a clear solution; then, KOH (2 M) was added to adjust the pH value to 8 with stirring. The solution was kept at 363 K for 1 h, then separated and washed with ammonia solution (25–28 wt%), deionized water, and ethanol to obtain the resultant black sample. The as-prepared Ni-P mixed with red phosphorus and the mixture was treated by a thermal treatment at 773 k for 1 h for the phase transformation to obtain Ni₅P₄ nanoparticles. A given amount of g-C₃N₄ and Ni₅P₄ was dissolved into DMF and kept under ultrasound for 1 h and stirred for another 12 h. The resultant solution was separated by centrifugation, washed with water and ethanol once, and then dried at 303 K for 6 h. The final hybrid was signed as Ni₅P₄/g-C₃N₄.

3. Results and discussion

The crystal structure of the as-prepared Ni_5P_4 and $Ni_5P_4/g-C_3N_4$ indicates the successful formation of the Ni_5P_4 phase and the $Ni_5P_4/g-C_3N_4$ hybrid. The unchanged peaks belonging to $g-C_3N_4$ and Ni_5P_4 in hybrid catalyst confirm that the structure of $g-C_3N_4$ and Ni_5P_4 remains the same after hybridization.

The elemental mapping of $Ni_5P_4/g-C_3N_4$ further demonstrates that Ni_5P_4 particles were deposited on the surface of $g-C_3N_4$. Ni_5P_4 particles in $Ni_5P_4/g-C_3N_4$ exhibit an irregular structure and an average particle size of 150–250 nm.

 $Ni_5P_4/g-C_3N_4$ (5 wt% Ni_5P_4) show comparable photocatalytic activity for H_2 generation to that for $Pt/g-C_3N_4$ (5 wt% Pt), which is approximately 39 times the amount obtained on pure $g-C_3N_4$ under visible light irradiation (> 420 nm). $Ni_5P_4/g-C_3N_4$ shows negligible degradation after the circulation of the H_2 production reaction under prolonged irradiation for 9 h, suggesting that $Ni_5P_4/g-C_3N_4$ acts as a stable photocatalyst.

Figure 1. XRD patterns of the as-prepared Ni_5P_4 and Ni_5P_4/g -C₃N₄ (5 wt% Ni_5P_4).

Figure 2. EDX mapping images for Ni₅P₄/g-C₃N₄.

Catalyst	Catalyst / mg	MeOH/mL	Water / mL	$H_2 / \mu mol \cdot g^{-1} \cdot h^{-1}$
$g-C_3N_4$	2	1	4	4.4
Ni ₅ P ₄ /g-C ₃ N ₄ (5wt%)	2	1	4	171.8
$Pt/g-C_3N_4 (5wt\%)$	2	1	4	175.5

 $\label{eq:constraint} \textbf{Table 1.} Photocatalytic H_2 \ generation \ rates \ for \ g-C_3N_4, \ Ni_5P_4/g-C_3N_4, \ and \ Pt/g-C_3N_4.$

4. Conclusions

In conclusion, Ni_5P_4 was prepared through an annealing method. After hybridization with g-C₃N₄, Ni_5P_4 exhibits good photocatalytic H₂ generation activity and stability. This combination of superior efficiency and stability among earth abundant elements makes Ni_5P_4 a promising candidate for the future development of renewable H₂ via photocatalytic water splitting.

References

- 1. H. Ou, L. Lin, Y. Zheng, P. Yang, Y. Fang, X. Wang, Adv. Mater. 29 (2017) 1700008.
- 2. Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem., Int. Ed. 53 (2014) 11926.
- 3. Y. Shi, B. Zhang, Chem. Soc. Rev. 45 (2016), 1529.
- 4. Z. Sun, M. Zhu, M. Fujitsuka, A. Wang, C. Shi, T. Majima, ACS Appl. Mater. Interfaces 9 (2017) 30583.