Influence of mid-infrared laser irradiation conditions on CO₂ photoreduction performance of Au/TiO₂ catalyst

T. Kondoh,^{a, *} Y. Y. Maruo,^a A. Sato^a

^aTohoku Institute of Technology, Sendai, Miyagi,982-8577, Japan *Corresponding author: E-mail: m176801@st.tohtech.ac.jp

Abstract: We carried out CO_2 photoreduction with an Au/TiO₂ photocatalyst and simultaneous irradiation with UV light and a 2 µm wavelength mid-infrared laser at several cooling temperatures. This work's purpose was to observe the relationship between the CH₄ production efficiency and the laser irradiation. We analyzed the generated components using FT-IR spectroscopy and found that CH₄ production rate with laser irradiation at 40 °C was 1.7 times larger than that at 15 °C. We assumed that the CH₄ production rate increased because the number of vibrationally excited CO₂ molecules at 40 °C was more than that at 15 °C. **Keywords:** CO₂ photoreduction, Au/TiO₂, Mid-infrared laser

1. Introduction

Photocatalysis is an important technology that can solve some environmental issues related to global warming, because photoreduction of the photocatalyst can convert CO_2 into hydrocarbons such as CH₄. It was reported that Au/TiO₂ could convert CO_2 into hydrocarbons (e.g., CH₄ and CO) under photoirradiation.^{[1],[2]} We studied the CO₂ photoreduction performance of the Au/TiO₂ catalyst under simultaneous irradiation with UV light and a 2.05 µm wavelength mid-infrared laser and confirmed that the CH₄ generation efficiency increased as a result of irradiation with the mid-infrared laser.^{[3],[4]} In this work, we carried out simultaneous irradiation with UV light and a 2 µm wavelength mid-infrared laser at cooling temperature of 15 °C and 40 °C.

2. Experimental

Au/TiO₂ (anatase) was produced by deposition precipitation method and fixed on a 20 \times 20 mm quartz filter paper. The sample was sintered at 200 °C for 2 hours in an air atmosphere before irradiation. We then placed the sample in a gas reactor and carried out simultaneous irradiation with UV light and a 2 μ m wavelength mid-infrared laser. After 1 hour of irradiation, we analyzed the generated components by

FT-IR spectrometer and repeated the irradiation and analysis five times. The atmosphere in the gas reactor was CO_2 at 50% R.H. Figure 1 shows the experimental setup. We adjusted the mid-infrared laser light to irradiate the surface of the quartz filter paper in the gas reactor.

3. Results and discussion

Scanning electron microscope (SEM) and Transmission electron microscope (TEM) images of the Au/TiO₂ (anatase) are shown in Figure 2. The Au/TiO₂ (anatase) particle diameter was approximately 0.5 μ m from Figure 2(A) and the Au nanoparticle diameter was approximately 14 nm from Figure 2(C). We analyzed the generated components using FT-IR spectroscopy. We calculated the amounts of CH₄ produced from the absorbance

Figure 2. SEM and TEM images of Au/TiO₂ (anatase) (A)SEM (B)TEM, and (C) TEM of Au nanoparticle

differences around 3017 cm⁻¹. Figure 3 shows the relationship between the CH₄ concentration calculated from absorbance differences and the irradiation times for each irradiation condition. The CH₄ production rate was calculated from the production amount per unit time from $2\sim5$ hour, considering the influence of

sample surface impurities. The CH₄ production rate without the laser is 0.12 μ mol/(g·h), and the rates with laser cooling temperature of 15 °C and 40 °C are 0.23 μ mol/(g·h) and 0.39 μ mol/(g·h), respectively. The CH₄ production rate with laser irradiation at 40 °C was 1.7 times larger than that at 15 °C. We found that the laser wavelength at a cooling temperature of 40 °C red-shifted compared to that at 15 °C (2.05 μ m). Figure 4 shows the CO₂ infrared absorption spectrum and probable 2 μ m mid-infrared laser spectra at 15 °C and 40 °C. Since the CO₂ infrared absorption exists in the

2.05~2.06 μ m range, when the mid-infrared laser wavelength shifts to above 2.05 μ m, the overlap between the CO₂ infrared absorption range and the mid-infrared laser wavelength increases. From Figure 4, the intensity of the absorbed infrared light is given by equation (1). Equation (1) approximates by Taylor expansion of the first approximation.

$$\mathbf{I}_{abs} = \Sigma \mathbf{I}_{0i} \left(1 - \exp\left(-\alpha_i \cdot l \right) \right) \approx \Sigma \mathbf{I}_{0i} \cdot \alpha_i \cdot l \quad (1)$$

In equation (1), I_{abs} is the intensity of absorbed infrared light (mW), I_{oi} is the intensity of the irradiating

2.04

2.05

infrared light at v_i (mW), α_i is the CO₂ absorption coefficient at v_i (cm⁻¹), *l* is the gas reactor length (cm), v_i is the wavenumber (cm⁻¹). The number of vibrationally excited CO₂ molecules is given by equation (2).

 $N_{CO2} = I_{abs} / E_i \quad (2)$

In equation (2), N_{CO2} is the number of vibrationally excited CO_2 molecules and E_i is the photon energy at v_i (J). From equations (1) and (2), we could calculate the number of vibrationally excited CO_2 molecules. Figure 5 shows the number of vibrationally excited CO_2

molecules at each wavelength. We calculated the number of vibrationally excited CO₂ molecules at each wavelength at 15 °C and 40 °C as 1.4×10^{17} and 3.4×10^{17} , respectively. We assumed that the CH₄ production rate increased because the number of vibrationally excited CO₂ molecules at a cooling temperature of 40 °C was more than that at 15 °C and the excitation allowed electron transfer from Au nanoparticles on the TiO₂ to CO₂ molecules.

4. Conclusions

We carried out CO₂ photoreduction on Au/TiO₂ under simultaneous irradiation with UV light and a 2 μ m mid-infrared laser. It was found that the CH₄ production rate with laser irradiation at 40 °C was approximately 1.7 times larger than that at 15 °C. We assumed that the CH₄ production rate increased because the number of vibrationally excited CO₂ molecules at a cooling temperature of 40 °C was more than that at 15 °C.

References

- 1. M. Haruta, Cattech 6(3), 102-115(2002).
- 2. Z. Zhang, et al., J. Phys. Chem. C, 117(49), 25939-25947(2013).
- Y. Y. Maruo, M. Sasaki, S.Hino and A. Sato, Effect of TiO₂ crystal structure on CO₂ photoreduction using Au nanoperticle on TiO₂ catalyst, proceeding of the 16-th international conference on Nanotechnology, Sendai, Japan, 559-562(2016).
- 4. T. Kondoh, et al., ICARP2017, 197(2017)

Figure 4. CO₂ infrared absorption spectrum and probable 2 um mid-infrared laser spectra at 15 °C and 40 °C

excited CO₂ molecules

concentration calculated from absorbance

2.07

-15℃

40°C

2.08

2.06

3E+17

2.5E+17

excited

Wavelength (um