Photocatalytic water splitting promoted by Al-doped SrTiO₃ coloaded with molybdenum oxide and rhodium-chromium oxide

<u>Tzu Hsuan Chiang</u>^{a,b}, Takashi Hisatomi^b, Yosuke Goto^b, Tsuyoshi Takata^b, Masao Katayama^b, Tsutomu Minegishi^b, Kazunari Domen^{b,*}

^a Department of Energy Engineering, National United University, 36006, Taiwan

² Department of Chemical System Engineering, The University of Tokyo, 113-8656, Japan

*Corresponding author: Kazunori Domen (domen@chemsys.t.u-tokyo.ac.jp)

Abstract: The study was investigated enhancing the water splitting activity of highly efficient cocatalyst/photocatalyst composites by coloading a small amount of molybdenum oxide (MoO_y), followed by calcination. Reductively photodeposited MoO_y modifies the chemical state of the RhCrO_x cocatalyst and likely promotes photocatalytic H₂ evolution, whereas MoO_y loaded onto STO:Al catalyzes neither photocatalytic H₂ nor O₂ evolution. Al-doped SrTiO₃ loaded with a MoO_y and rhodium-chromium mixed oxide (MoO_y /RhCrO_x/STO:Al) has the highest apparent quantum yield (AQY) of 69% under 365 nm ultraviolet (UV) light.

Keywords: photocatalyst, cocatalyst, water splitting.

1. Introduction

Molybdenum oxides have recently been demonstrated to function as electrocatalysts for hydrogen evolution [1, 2]. Some molybdenum oxides have also been applied as cocatalysts for photocatalytic water splitting. Busser *et al.* [3] studied $CuO_z/CrO_y/MoO_x$ -modified Ga_2O_3 photocatalysts meant for overall water splitting and reported that these materials showed excellent activity and stability. The application of a Mo coating on a Pt/SrTiO₃ photocatalyst was shown to suppress the backward reactions on Pt in a similar manner to a Cr_2O_3 coating [4]. Therefore, the loading of molybdenum oxides is also expected to enhance the water splitting activity of various photocatalysts. In the present work, the coloading of MoO_y cocatalysts onto RhCrO_x/STO:Al photocatalysts was studied in an attempt to improve the activity of the original materials. It was found that coloading MoO_y by photodeposition and calcination did indeed enhance the water splitting activity of these photocatalysts, such that the AQY was improved by 20%, to 69%, at 365 nm. The characteristics and photocatalytic water splitting activities of these MoO_y and RhCrO_x-coloaded STO:Al photocatalysts are discussed herein.

2. Experimental

MoO_y was loaded onto the RhCrO_x/STO:Al by photodeposition. The RhCrO_x/STO:Al photocatalyst (0.20 g) was dispersed in distilled water (100 mL) containing varying amounts of Na₂MoO₄·2H₂O (Sigma-Aldrich Co, LLC.) as the Mo precursor. The MoO_y loading was determined by the amount of Mo added to the solution (0–10 wt% with respect to the RhCrO_x/STO:Al powder). Photodeposition was carried out using a closed gas-circulation system. The suspension was contained in a top-irradiation reactor and evacuated to completely remove air, after which it was irradiated using a 300 W xenon lamp (300 nm < λ < 500 nm), equipped with a dichroic mirror, through a Pyrex window for 4 h. The powder was subsequently collected and dried in an oven at 313 K, following which the MoO_y/RhCrO_x/STO:Al was calcined at 573 K in air for 1 h. In some cases, the calcination temperature was varied within the range from 313 K (that is, no calcination) to 673 K.

3. Results and discussion

Figure 1 shows the water splitting rates obtained from $MoO_y/RhCrO_x/STO:Al$ samples having different Mo loadings and calcined at 573 K under UV irradiation. The H₂ and O₂ evolution rates were increased with increases in the Mo loading from 0 to 5 wt%. However, excessive loading of MoO_y (more than 8 wt% Mo)

lowered the gas evolution rates, presumably because the MoO_y blocked surface active sites on the RhCrO_x/STO:Al photocatalyst and also shaded the photocatalyst. The loading of an excess of a cocatalyst generally decreases the activity of photocatalysts [5]. In addition, Figure 1(b) presents the water splitting rates obtained from MoO_y/RhCrO_x/STO:Al photocatalysts (Mo 5 wt%) calcined at different temperatures for 1 h. The gas evolution rates evidently increased with the calcination temperature up to 573 K. However, the sample calcined at 673 K showed almost the same activity as that of the pristine RhCrO_x/STO:Al and thus was not improved by the coloading of MoO_y. This result can most likely be attributed to the aggregation of the RhCrO_x cocatalyst during calcination at 673 K [28]. Consequently, the MoO_y/RhCrO_x/STO:Al calcined at 573 K exhibited the highest water splitting activity, with an AQY of 69 ± 1.4% at 365 nm.

Figure 1. (a) The photocatalytic activity of $MoO_y/RhCrO_x/STO:Al$ under UV irradiation (300 nm $< \lambda < 500$ nm) as a function of the amount of Mo added. All samples were calcined at 573 K. (b) Dependence of the photocatalytic activity of $MoO_y/RhCrO_x/STO:Al$ under UV irradiation (300 nm $< \lambda < 500$ nm) on the different calcination temperature. The MoO_y loading of each sample was 5 wt% as Mo.

4. Conclusions

This study demonstrated that the water splitting activity of highly-active RhCrO_x/STO:Al photocatalysts can be enhanced by loading a relatively low amount (5 wt%) of Mo species. Calcination of the $MoO_y/RhCrO_x/STO:Al$ photocatalyst at 573 K further improved their water splitting activity. The resulting AQY of 69% at 365 nm is the highest yet reported for overall water splitting in this wavelength region.

References

[1] Liu, Y. R.; Hu, W. H.; Han, G. Q.; Dong, B.; Chai, Y. M.; Liu, Y. Q.; Liu, C. G. ECS Electrochem. Lett. 4 (2015) H5.

- [2] Thangasamy, P.; Ilayaraja, N.; Jeyakumar, D.; Sathish, M. Chem. Commun. 53 (2017) 2245.
- [3] Busser, G. W.; Mei, B.; Weide, P.; Vesborg, P. C. K.; Stührenberg, K.; Bauer, M.; Huang, X.; Willinger, M. G.; Chorkendorff, I.; Schlögl, R.; Muhler, M.; ACS Catal. 5 (2015) 5530.
- [4] Garcia-Esparza, A. T.; Shinagawa, T.; Ould-Chikh, S.; Qureshi, M.; Peng, X.; Wei,; Anjum, N. D. H.; Clo, A.; Weng, T. C.; Nordlund, D.; Sokaras, D.; Kubota, J.; Domen, K.; Takanabe, K. Angew. Chem. Int. Ed. 56 (2017) 5780.
- [5] Ran, J.; Zhang, J.; Yu,; Jaroniec, J. M.; Qiao, S. Z. Chem. Soc. Rev. 43 (2014) 7787.