Oxygen-doped Ta₃N₅ modified with a Ru(II) binuclear complex having the ability to reduce CO₂ under a wide range of visible light

<u>Kanemichi Muraoka</u>,^{a,b} Junie Jhon M. Vequizo^c, Akira Yamakata,^c Osamu Ishitani^a, Kazuhiko Maeda^a

^a Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

^b Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1, Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan

^c Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan **Corresponding author: 03-5734-2239, maedak@chem.titech.ac.jp*

Abstract: A hybrid photocatalyst constructed with Ta_3N_5 and a binuclear ruthenium(II) complex had the ability to reduce CO_2 into HCOOH with very high selectivity (>99%) under a wide range of visible light (λ > 500 nm). In particular, Ta_3N_5/SiO_2 prepared from Ta_2O_5 , which was loaded on SiO₂ by a sol-gel method, showed 4–6 times higher activity than the bulk type Ta_3N_5 . UV-vis diffuse reflectance spectra showed that the background absorption of the Ta_3N_5/SiO_2 spectrum, which is attributed to tantalum reduced species, was reduced, compared to the bulk Ta_3N_5 . The decrease of the defect density contributed to the suppression of the charge recombination, resulting in higher activity of Ta_3N_5/SiO_2 .

Keywords: CO₂ fixation, (Oxy)nitride, Metal complex.

1. Introduction

There are many reports on tantalum nitride (Ta_3N_5) for photocatalytic or photoelectrochemical water splitting, because Ta_3N_5 has wide range of visible light absorption property and suitable band edge position for water splitting.¹ However, there is no report on application of Ta_3N_5 for photocatalytic CO₂ reduction. In order to enhance the photocatalytic activity, it is well known that in the synthesis of Ta-based oxynitrides, suppressing the Ta reduced species is important, which acts as a recombination center of charge carrier.² Herein we report that Ta_3N_5 can reduce CO₂ to HCOOH when combined with a Ru(II) binuclear complex (**RuRu'**) under the irradiation of visible light ($\lambda > 500$ nm). In particular, we focused on interfacial interaction between anion (in particular oxygen) and Ta_3N_5 by using composite of Ta_2O_5 loaded on SiO₂ as a precursor, which is considered to have interaction between oxygen within SiO₂ and Ta.^{3,4} This method is based our previous report, in which ZrO₂-modified TaON showed higher activity by utilizing interaction between the two components, resulting in suppression of reduced Ta species.⁵ In this work, we successfully suppressed the production of the undesirable reduced Ta species in Ta_3N_5 , thereby improving photocatalytic CO₂ reduction activity.

2. Experimental (or Theoretical)

In this work, Ta_3N_5 -loaded SiO₂ (Ta_3N_5 /SiO₂) was synthesized by thermal ammonolysis of Ta_2O_5 /SiO₂, which was in prior prepared by a sol-gel method, with dry annmonia.^{3,4} Powders of bulk Ta_3N_5 and nanoparticulate Ta_3N_5 were also synthesized as references according to the methods reported previously.⁵ These reference samples are represented hereafter as bulk- Ta_3N_5 and nano- Ta_3N_5 , respectively. Each nitride sample was characterized by X-ray diffraction (XRD), UV-visible diffuse reflectance spectra (DRS), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and transmission electron microscope (TEM). Prior to CO₂ reduction, the as-prepared Ta_3N_5 samples were modified with both Ag nanoparticles and a **RuRu'**, which work as an electron-transfer promoter and a photocatalytic unit having a high ability to reduce CO₂, respectively.

3. Results and discussion

XRD and DRS showed that the single phase Ta_3N_5 was produced in each nitrided sample. To investigate the possible incorporation of oxygen into the lattice of Ta_3N_5 , XPS measurements were

conducted. The Ta $4f_{7/2}$ peak positions in Bulk-Ta₃N₅ and Nano-Ta₃N₅ (24.6 eV) were in good agreement with previous reports.⁶ On the other hand, the peak position in Ta₃N₅/SiO₂ (25.0 eV) is located between the Ta₃N₅ references (24.6 eV) and TaON (25.2 eV), which is intermediate product between Ta₂O₅ and Ta₃N₅. This result clearly indicates that there is much more contribution of Ta–O bondings in Ta₃N₅/SiO₂ than those in pure Ta₃N₅ samples.

The incorporation of oxygen into Ta_3N_5 was found to alter the optical absorption profile of Ta_3N_5 . Figure 1 shows the DRS of each Ta_3N_5 sample. The absorption edge position of Ta_3N_5 is consistent with the previous report⁶. However, the absorption edge of Ta_3N_5/SiO_2 is located at ca. 580 nm, 20 nm blue-shifted compared to other Ta_3N_5 samples. This is primarily attributed to the higher oxygen concentration in

Figure 1 UV-visible diffuse reflectance spectra for Ta₃N₅ samples

 Ta_3N_5/SiO_2 than the others, as indicated by XPS. The absorption at wavelength regions longer than 600 nm, attributed to reduced tantalum species,² is different from each other. The fact that Ta_3N_5/SiO_2 has the weakest absorption in the longer wavelength region compared to Bulk- Ta_3N_5 and Nano- Ta_3N_5 indicates that formation of anionic defects during nitridation is most effectively suppressed in Ta_3N_5/SiO_2 .

Using as-prepared Ta_3N_5 and **RuRu'**, CO₂ reduction was conducted. All Ta_3N_5 samples were capable of reducing CO₂ into HCOOH under visible light with high selectivity (~99%) (Table 1). In particular, Ta_3N_5/SiO_2 showed 4–6 times higher activity than the other Ta_3N_5 samples. As mentioned above, Ta_3N_5/SiO_2 has the weakest absorption in the longer wavelength region than band gap transition, which is derived from reduced tantalum species (i.e., anionic defects). The lower density of defects in Ta_3N_5/SiO_2 is most likely to contribute to suppression of electron–hole recombination, leading to higher activity. In addition, an increase in the driving force for reduction/oxidation processes that resulted from the blue-shift of the absorption edge (see Figure 1) might be responsible to higher activity as well.

Sample	Amount of product / nmol (TON)			Selectivity _{HCOOH} / %
	НСООН	СО	H_2	
Bulk-Ta ₃ N ₅	738 (41)	N.D.	7	99
Nano-Ta ₃ N ₅	1080 (60)	N.D.	13	99
Ta ₃ N ₅ /SiO ₂	4320 (240)	N.D.	7	>99

Table 1. Results of CO₂ reduction by RuRu'/Ag (1.5 wt%)/Ta₃N₅^a

^a Reaction conditions: photocatalyst, 4.0 mg (Ag 1.5 wt%); solution, a mixture of MeCN and TEOA (4:1 v/v) 4.0 mL; light source, 400 W high pressure Hg lamp (SEN) with a K₂CrO₄ solution filter. Reaction time: 15 h. **RuRu'** loaded was 4.5 μ mol g⁻¹.

4. Conclusions

In this work, we could apply Ta_3N_5 to visible-light CO₂ reduction with the aid of **RuRu'**. When using Ta_2O_5/SiO_2 as a precursor oxide, we could suppress the production of anion defects of Ta_3N_5/SiO_2 during the nitriding reaction, resulting in higher activity of Ta_3N_5/SiO_2 . It is also suggested that appropriate amount of oxygen doping into Ta_3N_5 is effective for enhancing photocatalytic activity.

References

- 1. G. Hitoki, et al., Chem. Lett., 7, (2002), 736-737.
- 2. Y. Lee, et al., Chem. Lett., 35, (2006), 352–353.
- 3. X. Liu, et al., Mater. Res. Bull., 49, (2014), 58-65.
- 4. D. Wang, et al., Angew. Chem. Int. Ed., 52, (2013), 11252-11256.
- 5. K. Maeda, et al., Bull. Chem. Soc. Jpn., 81, (2008), 927–937.
- 6. K. Maeda, et al., Appl. Catal. A, 370, (2009), 88-92.
- 7. W. Chun, J. Phys. Chem. B 107, (2003), 1798-1803.