Growth of rod-like Ta₃N₅ single crystal on KTaO₃ towards visible-light-driven overall water splitting

Zheng Wang,^{a,c} Yasunobu Inoue,^c Takashi Hisatomi,^{b,c} Tsuyoshi Takata,^{b,c} Kazunari Domen^{a,b,c}*

^aCenter for Energy & Environmental Science, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan ^bDepartment of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo 113-8656, Japan

^cJapan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), 2-11-9 Iwamotocho, Chiyoda-ku, Tokyo 101-0032, Japan *Corresponding author: Fax number: +81-3-5841-8838, E-mail address: domen@chemsys.t.u-tokyo.ac.jp

Abstract: We have found that Ta_3N_5 nano-crystals grown on $KTaO_3$ by short-time nitridation have a remarkable photocatalytic ability for overall water splitting to produce H_2 and O_2 under visible light ($\lambda \ge 420$ nm) irradiation in the presence of co-catalysts such as Rh/Cr₂O₃. The specific active structures are discussed.

Keywords: Ta₃N₅ nanorod, single crystal, water splitting.

1. Introduction (11-point boldface)

Direct decomposition of water into hydrogen and oxygen using one particulate photocatalyst is the simplest and most cost-effective means to solar energy-driven hydrogen production. Tantalum nitride (Ta_3N_5) photocatalyst with a small band-gap energy of 2.1 eV and simple composition is one of the promising candidates and has extensively been studied as a H₂ or O₂ evolving photocatalyst in the half reactions, Z-schemed water splitting, and a photoanode in the photoelectrochemical water splitting.¹⁻³ However, it has not yet been applicable for overall water splitting. In this study, we have found that Ta_3N_5 nanorods epitaxially grown on cubic potassium tantalate (KTaO₃) exhibits a remarkable photocatalytic activity for overall water splitting under visible light irradiation when Rh/Cr₂O₃ cocatalyst is deposited.

2. Experimental (or Theoretical)

 $KTaO_3$ prepared by a conventional solid state reaction method was subject to short-term nitridation under NH₃ gas flow at 1173 K, which yielded Ta₃N₅ maintaining the KTaO₃ phase (Ta₃N₅/KTaO₃). A Rh/Cr₂O₃ core-shell co-catalyst was formed on Ta₃N₅/KTaO₃ surfaces by the successive photodepositions of Rh and Cr₂O₃.⁴ The prepared photocatalysts were characterized by XRD, UV-vis DRS SEM and HR-STEM.

Photocatalytic reactions were carried out in a Pyrex reaction vessel connected to a closed gascirculation system. 300 W Xe lamp (L42, $\lambda \ge 420$ nm) and solar simulator (AM 1.5G) were used as a light source. The evolved gas products were analyzed by the on-line TCD-GC equipped with a Molecular Sieve 5A column.

3. Results and discussion

The XRD patterns showed that short-time (0.05 ~ 0.5h) nitridation of KTaO₃ caused small peaks assigned to Ta_3N_5 phase and no other impurity phase like TaON structure was formed, indicating the formation of Ta_3N_5 in the presence of KTaO₃. SEM images exhibited rod-like Ta_3N_5 crystals were grown at the edges of KTaO₃ particulates. With the increase of nitridation time from 0.5h to 4 h, the number density of Ta_3N_5 nanorods and the length increased. The HR-STEM demonstrated that the nanorods were Ta_3N_5 single crystals selectively grown on the (110) facets of KTaO₃ rather than on (100) faces. In addition, the UV-vis DRS of $Ta_3N_5/KTaO_3$ showed similar absorption feature to that of conventional Ta_3N_5 in the longer wavelength range and the absorption backgrounds of $Ta_3N_5/KTaO_3$ samples were much lower as compared with the conventional Ta_3N_5 , indicating the less defect density in the Ta_3N_5 nanorod single crystals. In the

photodeposition of Rh under visible light ($\lambda \ge 420$ nm) on Ta₃N₅/KTaO₃, Rh metal particles were selectively formed on the Ta₃N₅ nanorod crystals without the deposition on the surface of KTaO₃. The Rh/Cr₂O₃ coreshell cocatalyst on Ta₃N₅/KTaO₃ exhibited the best photocatalytic activity for overall water splitting, as compared with other core-shell-structured metal/Cr₂O₃ cocatalysts, such as Pt, Ir and Ru. The optimum loading amount of Rh on Ta₃N₅/KTaO₃ varied for Ta₃N₅/KTaO₃ samples with the different nitridation durations, because of the variable density of Ta₃N₅ structure in different Ta₃N₅/KTaO₃ samples. Fig. 1 shows time course of the H₂ and O₂ evolution for overall water splitting under visible light ($\lambda \ge 420$ nm). The simultaneous evolution of H₂ and O₂ occurred in nearly the same ratio as the stoichiometry of 2 : 1. The repetition of the reaction by evacuating the gas phase shows nearly the same evolutions of H₂ and O₂, which clearly demonstrates that Rh/Cr₂O₃-loaded Ta₃N₅/KTaO₃ is very stable for the decomposition of water under visible light ($\lambda \ge 420$ nm). The quantum efficiency measured using a band pass filter was 0.22% at 420 nm(±10nm). Furthermore, stable H₂ and O₂ production was also obtained under simulated sunlight (AM 1.5G) irradiation over Rh/Cr₂O₃-loaded Ta₃N₅/KTaO₃. The photocatalytic performance of the Ta₃N₅ is attributed to the formation of well-crystallized single crystals with no grain boundary.

Figure 1. Time courses of H₂ (\circ) and O₂ (\bullet) evolutions in overall water splitting over Rh/Cr₂O₃-loaded Ta₃N₅/KTaO₃ under visible light (300W Xe lamp, $\lambda \ge 420$ nm) irradiation.

4. Conclusions

In summary, we succeed to fabricate a rod-like Ta_3N_5 single crystal through a simple epitaxial growth process. By controlling the nitridation of cubic KTaO₃ powders for short duration, the Ta_3N_5 nanorod single crystals are selectively grown on the edges of KTaO₃ cubes. The high-crystalline Ta_3N_5 nanorods on KTaO₃ modified with Rh/Cr₂O₃ cocatalyst are very active for the overall water splitting under visible light irradiation.

References

- 1. S. Ma, T. Hisatomi, K. Maeda, Y. Moriya, K. Domen, J. Am. Chem. Soc. 134 (2012) 19993.
- 2. Y. Qi, S. Chen, M. Li, Q. Ding, Z. Li, J. Cui, B. Dong, F. Zhang, C. Li, Chem. Sci. 8 (2017) 437.
- M. Zhong, T. Hisatomi, Y. Sasaki, S. Suzuki, K. Teshima, M. Nakabayashi, N. Shibata, H. Nishiyama, M. Katayama, T. Yamada, K. Domen, Angew. Chem. Int. Ed. 56 (2017) 4739.
- 4. K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, K. Domen, Angew. Chem. Int. Ed. 45 (2006) 7806.