Enhancement of photocatalytic activity of tungsten oxide for water splitting by modification with brownmillerite-type Fe-Co oxide

Yoshiki Degami,^{a,*} Etsushi Tsuji,^b Satoshi Suganuma,^b Naonobu Katada^b

^aDepartment of chemistry and Biotehcnology, Tottori University, Tottori, 680-8552, Japan ^bCenter for Research on Green Sustainable Chemistry, Tottori University, Tottori, 680-8552, Japan *Corresponding author: Fax number +81-857-31-5684, E-mail address s.y.m23v50.94@gmail.com

Abstract: Brownmillerite-type Ca₂FeCoO₅ synthesized by a sol-gel method and loaded by an electrophoretic deposition method on WO₃ and TiO₂ as a cocatalyst, and photoelectrochemical activity for water splitting was evaluated. The photocurrent density of WO₃ was increased by loading Ca₂FeCoO₅, while that of TiO₂ was decreased by the loading. Ultraviolet-visible-near infrared spectroscopy and Mott-Schottky analysis revealed that the higher conduction band level of Ca₂FeCoO₅ than that of WO₃, inducing the charge separation, the oxygen evolution on the surface of Ca₂FeCoO₅ and enhancement of the PEC activity. **Keywords:** PEC water splitting, brownmillerite, cocatalyst.

1. Introduction

Enhancement of activity of a photocatalyst for water splitting and related reactions by modification with a cocatalyst for oxygen evolution reaction (OER) has been attempted. Recently, Tsuji et al. found Brownmillerite (BM)-type Ca_2FeCoO_5 with remarkably high OER activity, higher than those of noble metal oxides such as RuO_2 .¹ The interface between the BM-type Ca_2FeCoO_5 and a semiconductor photocatalyst like WO₃ should be "semiconductor-semiconductor" type, whereas the interface between the photocatalyst and a conventional cocatalyst such as RuO_2 is "semiconductor-metal like" interface. In the former case, the energy levels of conduction bands (CB) and valence bands (VB) of BM-type Ca_2FeCoO_5 and the photocatalysts control the direction of electron transfer, significantly affecting the photoelectrochemical (PEC) activity. In this work, we report the effect of loading BM-type Ca_2FeCoO_5 on the photocatalysts with different band positions, i.e., WO₃ and TiO₂, on the PEC activity.

2. Experimental

A photoanode was prepared by an electrophoretic deposition (EPD) method on a fluorine-doped tin oxide (FTO) glass substrate in a constant voltage mode.² WO₃ or TiO₂ powder (40 mg) was dispersed in acetone (50 ml) with iodine (10 mg). Two FTO glasses were immersed in the solution and applied at -10 V between the electrodes using a DC power supply (thickness of the films; TiO₂ 1.5 ~ 2.5 μ m, WO₃ 0.6 ~ 0.9 μ m). Then, BM-type Ca₂FeCoO₅ synthesized by a sol-gel method¹ was loaded and annealed at 450 °C for 1 h in air. The PEC performance was studied by using a three electrode system. The fabricated photoanodes, a platinum foil and a saturated Ag/AgCl/KCl electrode were used as the working, counter and reference electrodes, respectively. The simulated solar or ultraviolet (UV) illumination was carried out by passing light from a 500 W Xe arc lamp equipped with an AM 1.5G filter (100 mW/cm²) or a 33U filter (cut more than 330 nm, 60 mW/cm²). The light was irradiated from the back side of the FTO glasses for all cases. The surface area of each photoanode was 1 cm². A 0.05 mol dm⁻³ Na₂SO₄ aqueous solution was used as an electrolyte for the PEC measurements. UV-visible-near infrared (UV-Vis-NIR) spectrum was obtained with JASCO V-770 spectrometer by a diffuse reflectance method in the wavelength range of 190 - 2500 nm and converted to the absorption spectrum by using Kubelka-Munk function.

3. Results and discussion

The current density-potential (*J-V*) curves for OER are shown in Figure 1. The photocurrent density of WO₃ irradiated with the simulated solar light at > ca. 1 V vs. RHE was obviously increased (from 0.46 mA cm⁻² to 0.78 mA cm⁻² at 1.23 V vs. RHE) by loading BM-type Ca₂FeCoO₅. On the other hand, the

photocurrent density of TiO_2 irradiated with UV at 0.4-1.7 V vs. RHE was decreased by the loading. Thus, the PEC activity of WO₃ was enhanced by the loading of BM-type Ca₂FeCoO₅, while that of TiO_2 was suppressed.

Figure 2 (a) displays a UV-Vis-NIR absorbance spectra of BM-type Ca₂FeCoO₅, showing the absorption in a wide infrared range. Figure 2 (b) shows a Tauc plot, indicating a direct optical band gap of 1.1 eV. The Mott-Schottky analysis provided the band energy levels as shown in Figure 3. The bottom edge of CB of Ca₂FeCoO₅ was located between the bottom edges of CB of WO₃ and TiO₂, making the CB of Ca₂FeCoO₅ more negative than that of WO₃ but more positive than that of TiO₂. The upper edge of VB of Ca₂FeCoO₅ was more positive than those of both WO₃ and TiO₂. This tells us that that photogenerated holes moved from WO₃ to Ca₂FeCoO₅, and therefore the BM-type Ca₂FeCoO₅ with the OER activity oxidized water to form oxygen, while photogenerated electrons were not moved to Ca₂FeCoO₅. In contrast, not only the holes but also the electrons moved from TiO_2 to Ca₂FeCoO₅, probably resulting in the recombination. Thus, the BM-type Ca_2FeCoO_5 enhanced the PEC activity of a photocatalyst for water splitting through the OER on the Ca₂FeCoO₅ surface in the case where the both levels of CB and VB were more negative than those of the photocatalyst.

4. Conclusions

The photocurrent density of WO₃ was increased to about 1.7 times by loading of the BM-type Ca_2FeCoO_5 , whereas that of TiO₂ was decreased. The Tauc plot of Ca_2FeCoO_5 showed a direct optical band gap 1.1 eV. Mott-Schottky analysis showed that the upper edge of CB of Ca_2FeCoO_5 was more negative

Figure 1. Photocurrent densities of WO₃ and Ca₂FeCoO₅/WO₃ under AM1.5G irradiation and those of TiO₂ and Ca₂FeCoO₅ under UV irradiation in 0.05 mol dm⁻³ Na₂SO₄.

Figure 2. (a) UV-Vis-NIR spectrum and (b) Tauc plots of Ca₂FeCoO₅.

Figure 3. Conduction and valence band levels of WO₃, TiO₂ and Ca₂FeCoO₅ analyzed from UV-vis-NIR spectroscopy, redox potentials of H^+/H_2 and O_2/H_2O and speculated charge flow.

than that of WO₃ and more positive than that of TiO₂, whereas the bottom edge of VB of Ca₂FeCoO₅ was more negative than those of WO₃ and TiO₂. Therefore, it is speculated that the photogenerated electrons and holes in Ca₂FeCoO₅/WO₃ were effectively separated by the moving of holes from WO₃ to Ca₂FeCoO₅, while the electrons were trapped in WO₃. It is thus shown that the BM-type Ca₂FeCoO₅ played a role of OER cocatalyst to enhance the PEC activity for water splitting in the case where the band positions were suitably located.

Acknowledgments

This work was partly supported by the JSPS KAKENHI Grant Number 16K17968, Japan.

References

- 1. E. Tsuji et al., ChemSusChem, 2017, 10, 2864.
- 2. E. Kim et al., J. Am. Chem. Soc, 2013, 135, 5375.