Photocatalytic water splitting and CO₂ reduction over Nb- and Ta-containing metal oxide photocatalysts with a laminated structure

Keita Nakagawa,^a Akihide Iwase,^{a,b} Akihiko Kudo^{a,b,*}

^aDepartment of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, 162-8601, Tokyo ^bPhotocatalysis International Research Center, Research Institute for Science and Technology, Tokyo University of science, Chiba, 278-8510, Japan *Corresponding author: +81-3-5261-4631, a-kudo@rs.kagu.tus.ac.jp

Abstract: Development of new photocatalysts for water splitting and CO₂ reduction is an important research topic to achieve highly efficient artificial photosynthesis. In the present study, we found that $A_{10}Ta_{29,2}O_{78}$ and $A_8Nb_{22}O_{59}$ (A = Cs, Rb) with a laminated structure were active photocatalysts for water splitting and CO₂ reduction. Both oxides showed activities for water splitting even without any cocatalyst. The activities were drastically improved by loading of NiO and Rh_{0.5}Cr_{1.5}O₃ cocatalysts. When Ag was loaded as a cocatalyst, $A_{10}Ta_{29,2}O_{78}(A = Cs, Rb)$ produced CO and H₂ as reduction products of CO₂ and H₂O, respectively, and O₂ as an oxidation product of H₂O.

Keywords: Water splitting, CO₂ Reduction, Laminated structure.

1. Introduction

Photocatalytic water splitting and CO₂ reduction have been extensively studied as a promising process to convert light energy to chemical energy. Various metal oxides with wide band gaps have been reported as an active photocatalyst for water splitting and CO₂ reduction under UV irradiation.¹ For example, we have reported that CaTa₄O₁₁ and LaTa₇O₁₉ with a laminated structure show activities for water splitting and CO₂ reduction under UV irradiation.^{2,3,4} A₁₀Ta_{29,2}O₇₈ and A₈Nb₂₂O₅₉ (A = Cs, Rb) also possess the laminated structure,^{5,6} and hence are expected to show activities for photocatalytic water splitting and CO₂ reduction. In the present study, we investigated the photocatalytic properties of A₁₀Ta_{29,2}O₇₈ and A₈Nb₂₂O₅₉ (A = Cs, Rb) with the laminated structure.

2. Experimental

 $A_{10}Ta_{29,2}O_{78}$ and $A_8Nb_{22}O_{59}$ (A = Cs, Rb) were prepared by a polymerized complex method. NiO, Rh_{0.5}Cr_{1.5}O₃, and Ag cocatalysts were loaded by an impregnation method. The prepared materials were characterized using XRD, DRS, SEM, BET, and PL. Photocatalytic water splitting and CO₂ reduction were carried out in 1 atm of Ar and CO₂, respectively. Photocatalyst powder was dispersed in reactant solutions in an inner-irradiation cell made of quartz. A 400 W high-pressure mercury lamp was used as a light source. Gas products were determined using gas chromatographs.

3. Results and discussion

XRD measurements indicated that single phases of $A_{10}Ta_{29,2}O_{78}$ and $A_8Nb_{22}O_{59}$ (A = Cs, Rb) were obtained by a polymerized complex method. The band gaps of $A_{10}Ta_{29,2}O_{78}$ and $A_8Nb_{22}O_{59}$ (A = Cs, Rb) were estimated to be 4.4 eV and 3.6 eV, respectively, from the absorption edges of the diffuse reflectance spectra. Photoluminescence spectra at 77 K of the samples were also evaluated. $A_{10}Ta_{29,2}O_{78}$ (A = Cs, Rb) showed a broad blue emission with a maximum around 450 nm. The onset of the excitation spectrum agreed with that of the absorption spectrum.

Table 1 shows photocatalytic activities for water splitting over $A_{10}Ta_{29,2}O_{78}$ and $A_8Nb_{22}O_{59}$ (A = Cs, Rb). All of the metal oxides produced H₂ and O₂ even without any cocatalyst. It is noteworthy that the pristine $A_8Nb_{22}O_{59}$ (A = Cs, Rb) showed the activity for water splitting, because the niobates except $K_4Nb_6O_{17}^{7}$ require cocatalysts to achieve water splitting. The activities for water splitting were drastically improved when either an NiO or an $Rh_{0.5}Cr_{1.5}O_3$ cocatalyst was loaded. The turnover numbers reacted electron to molar quantities of photocatalysts were greater than unity, indicating that the water splitting

proceeded photocatalytically. When Ag cocatalyst was loaded, $A_{10}Ta_{29.2}O_{78}$ (A = Cs, Rb) showed the activity for CO₂ reduction to form CO accompanied by H₂ and O₂ evolution due to water splitting.

Photocatalyst	Cocatalyst (wt %)	BG / eV	$\frac{S.A.}{m^2 g^{-1}}$ -	Activity / μ mol h ⁻¹	
				H ₂	O ₂
$Cs_{10}Ta_{29.2}O_{78}$	None	4.4	4.3	10	4
$Cs_{10}Ta_{29.2}O_{78}$	NiO (0.2)	4.4	4.3	453	234
Rb10Ta29.2O78	None	4.4	4.4	8	4
Rb ₁₀ Ta _{29.2} O ₇₈	NiO (0.2)	4.4	4.4	369	188
$Cs_8Nb_{22}O_{59}$	None	3.6	2.4	4	3
$Cs_8Nb_{22}O_{59}$	Rh _{0.5} Cr _{1.5} O ₃ (0.5)	3.6	2.4	212	112
Rb ₈ Nb ₂₂ O ₅₉	None	3.6	1.4	5	3
Rb ₈ Nb ₂₂ O ₅₉	Rh _{0.5} Cr _{1.5} O ₃ (0.5)	3.6	1.4	343	175

Table 1. Water splitting over $Rh_{0.5}Cr_{1.5}O_3/A_8Nb_{22}O_{59}$ and $NiO/A_{10}Ta_{29.2}O_{78}$ (A = Cs, Rb) photocatalysts

Photocatalyst: 0.5 g, solution: pure water (340 mL), light source: 400-W high-pressure mercury lamp,

cell: inner irradiation cell made of quartz, cocatalyst: NiO (Impregnation 543K-1h), Rh_{0.5}Cr_{1.5}O₃ (Impregnation 623K-1h).

4. Conclusions

 $A_{10}Ta_{29,2}O_{78}$ and $A_8Nb_{22}O_{59}$ (A = Cs, Rb) with a laminated structure have arisen as a new photocatalyst for water splitting and CO₂ reduction under UV light irradiation. $A_{10}Ta_{29,2}O_{78}$ and $A_8Nb_{22}O_{59}$ (A = Cs, Rb) showed activity for water splitting even without a cocatalyst. In addition, loading of either NiO or $Rh_{0.5}Cr_{1.5}O_3$ drastically improved the water splitting activities of $A_{10}Ta_{29,2}O_{78}$ and $A_8Nb_{22}O_{59}$ (A = Cs, Rb). Ag-loaded $A_{10}Ta_{29,2}O_{78}$ (A = Cs, Rb) photocatalysts was also active for CO₂ reduction to CO accompanied by O₂ evolution in an aqueous medium. Thus, we have successfully developed new photocatalysts for artificial photosynthetic water splitting and CO₂ reduction.

References

- 1. A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253.
- 2. H. Kato, A. Takeda, M. Kobayashi, M. Kakihana, Chem. Lett. 2013, 42, 744
- 3. M. Matsui, A. Iwase, H. Kobayashi, A. Kudo, Chem. Lett. 2014, 43, 396
- 4. T. Takayama, H. Nakanishi, M. Matsui, A. Iwase, A. Kudo, J Photochem. Photobio A, 2017 in press.
- 5. G. D. Fallon, B. M. Gatehouse, J. Solid State Chem. 1980, 34, 193
- 6. J. C. Dewan, A. J. Edwards, G. R. Jones, J. Chem. Soc., Dalton Trans. 1978, 0, 968
- 7. A. Kudo, A. Tanaka, K. Domen, K. Maruya, K. Aika, and T. Onishi, J. Catal. 1988, 111, 67