Visible Light Driven Z-scheme Water Splitting with Transition Metal Substituted Polyoxometalates as Shuttle Redox Mediators

<u>Osamu TOMITA,</u>^a Hiroki NAITO,^a Yukari IWASE,^a Kohei TSUJI,^a Akinobu NAKADA,^a Masanobu HIGASHI,^a Ryu ABE^{a,b*}

^aGraduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan ^bJST-CREST, 7 Gobancho Chiyoda-ku, Tokyo 102-0076 Japan *Corresponding author: +81-75-383-2479, ryu-abe@scl.kyoto-u.ac.jp

Abstract: Water splitting systems based on Z-scheme mechanism have been developed and proven as a promising approach to harvesting a wider range of visible light. In the present study, V-substituted silicotungstate ($K_5[SiW_{11}O_{39}V^VO]$, denoted as $SiW_{11}V$) was prepared and employed as redox mediator to pursue the availability of polyoxomeatalate. The $SiW_{11}V^V/SiW_{11}V^{IV}$ was confirmed to function as electron donor in H₂-evolution system or as electron acceptor in O₂-evolution system. The $SiW_{11}V^V/SiW_{11}V^{IV}$ was revealed to function as effective shuttle redox mediator between the two photocatalysts under visible light irradiation.

1. Introduction

Water splitting systems based on two-step photoexcitation, so-called Z-scheme systems, have recently been developed and proven as a promising approach to harvesting a wider range of visible light,¹⁻⁴ because the water splitting reaction is separated into two parts, i.e., H₂- and O₂-evolving systems. Although the introduction of Z-scheme systems enables us to employ various visible-light responsive photocatalysts, the choice of simple redox ion couples for use in Z-scheme has been limited to simple ion couples such as IO_3^-/I^- and Fe³⁺/Fe²⁺. This is mainly due to the problems with mismatching redox potentials and/or irreversibility presented by other materials. The development of redox couples with appropriate redox potentials and sufficient reversibility under mild pH conditions is thus required in order to achieve highly efficient Z-scheme systems. We have recently reported a new Z-scheme water splitting system using a polyoxometalate (POM) as a redox mediator; the use of a Mn-substituted silicotungstate {K₆[SiW₁₁O₃₉Mn^{II}(H₂O)],³ denoted as SiW₁₁Mn} or Mo-substituted one {K₄[SiW₁₁O₃₉Mo^{VI}O], denoted as SiW₁₁Mo}⁴ with appropriate photocatalysts enabled a stoichiometric evolution of H₂ and O₂ under visible light. Here, we paid attention to the use of Vanadium-substituted silicotungstate (K₆[SiW₁₁O₃₉V^VO]), denoted as SiW₁₁V), employed as shuttle redox mediator to pursue the availability of transition metal-substituted polyoxomeatalates.

2. Experimental

The SiW₁₁V^V was prepared according to a previously reported method.⁵ A reduced specie containing V^{IV} was prepared via a bulk electrolysis cell. Photocatalytic reactions were carried out using Ru/SrTiO₃:Rh particles⁶ as H₂-evolving photocatalyst and PtO_x/WO₃ particles⁷ as O₂-evolving photocatalysts. A 300 W Xe lamp was used as light source and the evolved gases were analyzed using on-line gas chromatograph.

3. Results and discussion

Figure 1 shows the time course of H_2 evolution over Ru/SrTiO₃:Rh particles in aqueous KH₂PO₄ solution (0.5 M, 100 mL, pH 4.3) containing SiW₁₁V^{IV} (100 µmol) under visible light (400 < λ < 800 nm). The H₂ evolution is observed at an almost steady rate during irradiation. The H₂ evolution initialized with 100 µmol of SiW₁₁V^{IV} saturates at approximately 50 µmol, which is in fairly good agreement with the stoichiometric value (assuming the oxidation of SiW₁₁V^{IV} to SiW₁₁V^V by one photogenerated hole, accompanied by the reduction of H⁺ to H₂ with two photoexcited electrons). The rate of H₂ evolution on SiW₁₁V was slightly lower than that on SiW₁₁Mn^{II} that was confirmed to generate the stoichiometric amount of H₂ in our previous study.³ No H₂ evolution occurs in the aqueous solution of Ru/SrTiO₃:Rh photocatalysts

in the absence of polyoxometalate within 12 h. The absorption spectra of solution filtered after reaction can be assigned to the oxidized $SiW_{11}V^{V}$. The amount of $SiW_{11}V^{V}$ estimated from the absorbance is approximately consistent with the value estimated from the amount of H₂ evolved. These findings indicate that photocatalytic H₂ evolution over the Ru/SrTiO₃:Rh photocatalyst proceeds accompanied by oxidation of $SiW_{11}V^{V}$.

When the reaction is initiated with a $SiW_{11}V^{V}$ in the presence of PtO_x/WO_3 as O_2 -evolving photocatalysts, almost stoichiometric amount of O_2 generation is observed. This finding indicates that photocatalytic water oxidation to O_2 proceeds over the PtO_x/WO_3 , accompanied by an almost stoichiometric reduction of $SiW_{11}V^{V}$ to $SiW_{11}V^{IV}$. Thus, the $SiW_{11}V^{V}$ was confirmed to function as electron acceptor in the O_2 -evolving system.

Figure 2 shows the time course of photocatalytic evolution of H₂ and O₂ under visible-light irradiation using a mixture of Ru/SrTiO₃:Rh photocatalyst and PtO_x/WO₃ photocatalyst suspended in an aqueous KH₂PO₄ solution (pH 4.5) containing $SiW_{11}V^{V}$ or $SiW_{11}Mn^{II}$ (100 µmol). Although the rate of gases evolution gradually decreases, the generation of ca. 197.4 µmol of O₂ (total amount) indicates that ca. 789.7 μ mol of SiW₁₁V^V is reduced over PtO_{x}/WO_{3} . The absorption derived from $SiW_{11}V^{V}$ in the solution after the 125 h of reaction was almost same with that in initial solution. Therefore $SiW_{11}V^{V}$ is the dominant component in the solution during reaction. In the case of $SiW_{11}Mn^{II}$, the oxidized specie is also the dominant one.³ Therefore, the O₂-evolving systems are considered to be the rate-determining step in both cases. Considering the initial amount of $SiW_{11}V^{V}$ (100 µmol), at least 689.7 µmol

Figure 1. Time courses of H₂ evolution over Ru/SrTiO₃:Rh (0.1 g) from a KH₂PO₄ aq. solution (0.5 M, 100 mL) containing $[SiW_{11}O_{39}V^{IV}O]^{6-}$ or $[SiW_{11}O_{39}Mn^{II}(H_2O)]^{6-}$ (100 µmol).

Figure 2. Time courses of gasses evolution over Ru/SrTiO₃:Rh (0.1 g) and PtO_x/WO₃ (0.1 g) from a KH₂PO₄ aq. solution (0.5 M, 100 mL) containing $[SiW_{11}O_{39}V^VO]^{5-}$ or $[SiW_{11}O_{39}Mn^{II}(H_2O)]^{6-}$ (100 µmol).

of $SiW_{11}V^{V}$ is produced from $SiW_{11}V^{IV}$, indicating the sufficient turn-over number in the redox cycle. These results demonstrated that the water splitting into H₂ and O₂ proceeds photocatalytically, and that the $SiW_{11}V^{V}/SiW_{11}V^{IV}$ redox couple functions as an shuttle redox mediator between the two photocatalysts Ru/SrTiO₃:Rh and PtO_x/WO₃.

4. Conclusions

A vanadium-substituted silicotungstate, $[SiW_{11}O_{39}V^VO]^{5-}$, was revealed to function as stable shuttle redox mediator, affording simultaneous and stoichiometric generation of H₂ and O₂ under visible light with an appropriate combination of photocatalysts.

References

- 1. R. Abe, Bull. Chem. Soc. Jpn. 84 (2011) 1000.
- 2. A. Kudo, Y. Miseki, Chem. Soc. Rev. 38 (2009) 253.
- 3. K. Tsuji, O. Tomita, M. Higashi, R. Abe, ChemSusChem 9 (2016) 2201.
- 4. Y. Iwase, O. Tomita, H. Naito, M. Higashi, R. Abe, J. Photochem. Photobiol. A: Chem. (2018) accepted.
- 5. G. Herve, A. Teze, M. Leyrie, J. Coord. Chem. 9 (1979) 245.
- 6. Y. Sasaki, A. Iwase, H. Kato, A. Kudo, J. Catal. 259 (2008) 133.
- 7. R. Abe, M. Higashi, K. Domen, ChemSusChem 4 (2011) 228.