CO₂ reduction with water over Al₂O₃-supported Ga₂O₃ photocatalysts <u>Ryota Ito,</u>^{a*} Muneaki Yamamoto,^b Akiyo ozawa, ^{a,c} Yuma Kato,^a Yu Kawaguchi,^a Masato Akatsuka,^a Tetsuo Tanabe^b and Tomoko Yoshida ^{b,*}

^a Applied Chemistry and Bioengineering Graduate School of Engineering, Osaka City University, Osaka, 558-8585, Japan.

^b Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585, Japan. ^c Corporate Research Laboratories, Research & Development Division, Sakai Chemical Industry, Co., Ltd., Osaka, 590-8502, Japan.

*corresponding author: Tomoko Yoshida: +81-6-6605-3627, tyoshida@ocarina.osaka-cu.ac.jp

Abstract: Al₂O₃-supported Ga₂O₃ (Ga₂O₃/Al₂O₃) photocatalysts were prepared to improve the photocatalytic activity of Ga₂O₃ for CO₂ reduction with water. Although the CO production activities for 5, 10 and 20 wt% Ga₂O₃/Al₂O₃ samples were lower than non-supported Ga₂O₃, the activity was significantly improved by Al₂O₃-supporting, in particular 40 and 60 wt% of Ga₂O₃ loading. It was revealed that 5, 10 and 20 wt% Ga₂O₃/Al₂O₃ samples were single α -phase Ga₂O₃ while 40 and 60 wt% Ga₂O₃/Al₂O₃ samples consisted of α and γ phases, respectively. Thus, CO production activity of the prepared samples depended on the crystalline structure of Ga₂O₃ loaded on Al₂O₃.

Keywords: Ga₂O₃ loaded Al₂O₃, Ga₂O₃ structural change, photocatalytic CO₂ reduction with water.

1. Introduction

Nowadays photocatalytic reduction of CO₂, which reduces greenhouse gas and creates carbon resources by using clean solar energy, has attracted much attention. Ga_2O_3 is known to work as a photocatalytst for CO₂ reduction with water. However, its photocatalytic activity on CO₂ reduction remains low ^[1, 2]. In order to improve the photocatalytic activity of Ga_2O_3 , in this study, Al_2O_3 was used as support to have large surface area. We have examined photocatalytic activity of synthesized Al_2O_3 -supported Ga_2O_3 (Ga_2O_3/Al_2O_3) photocatalysts having different crystalline structures for the photocatalytic CO₂ reduction with water and investigated the relation between the structure of Ga_2O_3 and the CO production activity.

2. Experimental

Ga₂O₃/Al₂O₃ samples were prepared by impregnation of γ -phase Al₂O₃ with aqueous solution of gallium nitrate followed by dry and calcination in air at 823 K for 4 h. The loading amounts of Ga₂O₃ were 5, 10, 20, 40 and 60 wt%. Pure Al₂O₃ and non-supported Ga₂O₃ samples (referred as 0 and 100 wt%, respectively) were also prepared in the similar procedure. The photocatalytic CO₂ reduction with H₂O was carried out for all prepared samples. The synthesized sample (0.1 g) was dispersed in an aqueous solution of NaHCO₃ (0.1M) in the fixed-bed flow reactor cell under CO₂ gas with a flow rate at 3.0 mL/min and irradiated by UV-light (Xe lamp). The reaction products (CO, H₂ and O₂) were analyzed with gas chromatography. The samples were characterized with XRD and Ga K-edge EXAFS.

3. Results and discussion

Fig.1 compares production rates of CO and CO selectivity for all synthesized Ga_2O_3/Al_2O_3 . Although all Ga_2O_3/Al_2O_3 except non-supported one showed the photocatalytic activity, both CO production rate and CO selectivity for 5, 10 and 20 wt% Ga_2O_3/Al_2O_3 were lower than the others. 40 and 60 wt% of Ga_2O_3/Al_2O_3 showed higher reaction rate than non-supported one. In particular, the 40 wt% Ga_2O_3/Al_2O_3 showed the highest CO production rate and CO selectivity.

Fig.1 CO production rates and CO selectivity for prepared samples after 5 h

Fig.2 compares difference XRD patterns for all prepared samples which were given by subtracting the XRD intensity of pure Al₂O₃ from those of Al₂O₃ supported samples. The patterns depicted that 5, 10 and 20 wt% Ga₂O₃/Al₂O₃ were single α -phase Ga₂O₃, while 40 and 60 wt% Ga₂O₃/Al₂O₃ consisted of α and γ phases, respectively. 100 wt% Ga₂O₃ contained β -phase in addition to the α/γ -mixed phases.

The local structures of Ga_2O_3/Al_2O_3 were investigated by the EXAFS measurement of Ga K-edge spectra. The Fourier transform was performed on each EXAFS spectrum in the range from 3 Å⁻¹ to 12 Å⁻¹ and the radial structure function (RSF) was obtained as shown in Fig. 3. In the RSFs, the first peak appeared at 1-2Å is assigned to the backscattering from adjacent oxygen atoms (Ga-O bond) and the second peak around 2.7Å shows the presence of the second-neighboring gallium atoms (Ga-Ga bond) [3-5]. Considering XRD results, the RSF of 20 wt% Ga_2O_3/Al_2O_3 should be corresponding to α -phase Ga_2O_3 in which the amplitudes of the first and second peaks are almost the same. On the other hand, in RSF of 40 wt% Ga₂O₃/Al₂O₃, the first peak is larger than the second one which is similar to that of γ -Ga₂O₃. Therefore, the γ -Ga₂O₃ phase would dominate 40 wt% Ga₂O₃/Al₂O₃. In the conference, we will discuss why the α/γ -mixed phase Ga₂O₃ showed high activity for CO production based on the CO₂ adsorption experiments and in-situ FT-IR measurements.

4. Conclusions

We have synthesized Al₂O₃-supported Ga₂O₃

References

- 1. N. Yamamoto, T. Yoshida, S. Yagi, et al., e-J Surf. Sci. Nanotech., 12 (2014) 263-268.
- 2. M. Yamamoto, T. Yoshida, N. Yamamoto, H. Yoshida, S. Yagi, e-J. Surf. Sci. Nanotech., 12 (2014) 299-303.
- 3. M. Akatsuka, T. Yoshida, N. Yamamoto, et al., J. Phys. Conf. Ser. 712 (2016) 012056
- 4. K. Nishi, K. Shimizu, M. Takamatsu, et al., J. Phys. Chem. B 102 (1998) 10190-10195
- 5. Y. Kato, M. Yamamoto, A. ozawa, et al., accepted for e-J Surf. Sci.

Fig.2 Difference XRD patterns of Ga_2O_3/Al_2O_3 and Ga_2O_3 samples. The loading amount of Ga_2O_3 is (a) 5 wt% (b) 10 wt% (c) 20 wt% (d) 40 wt% (e) 60 wt% and (f) 100 wt%.

Fig.3 Fourier transfer Ga K-edge EXAFS spectra of (a-e) Ga₂O₃/Al₂O₃ samples and (g) γ -Ga₂O₃. The loading amount of Ga₂O₃ is (a) 5 wt% (b) 10 wt% (c) 20 wt% (d) 40 wt% (e) 60 wt% and (f) 100 wt%.