The study of structure dependence of Ga₂O₃ in photocatalytic reduction of CO₂ to CO with H₂O over the Ga₂O₃

Masato Akatsuka^a*, Muneaki Yamamoto^b, Yu Kawaguchi^a, Shinya Yagi^c, Tomoko Yoshida^b

^a Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, 558-8585, Japan

^bAdvanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585, Japan ^cInstitute of Materials and System for Sustainability, Nagoya University, Nagoya, 464-8601, Japan

*Corresponding author: Fax number, d18tc001@xr.osaka-cu.ac.jp

Abstract: Ga₂O₃ samples were prepared by calcination of Ga(NO₃)₃ • 8H₂O powder at various temperatures from 573 K to 973 K. Structural analyses by XRD and EXAFS measurements revealed the phase transition of Ga₂O₃ with increasing calcination temperature, i.e., ε -phase $\rightarrow \gamma$ -phase $\rightarrow \beta$ -phase. The photocatalytic reduction of CO₂ with water proceeded over all the prepared Ga₂O₃ samples to produce CO, H₂ and O₂. The Ga₂O₃ sample consisting of mixed phases of γ - and β -Ga₂O₃ showed specific high activity for CO production by improving CO₂ adsorption, and the activity was higher than that for Ag loaded Ga₂O₃ sample. **Keywords:** Ga₂O₃ photocatalyst, CO₂ reduction with water.

1. Introduction

Since we will continue to release much carbon dioxide into the atmosphere, we must establish a new technology for the conversion of carbon dioxide into renewable energies. It has been reported that Ag loaded Ga_2O_3 (Ag/Ga₂O₃) can produce CO, H₂ and O₂ from CO₂ and H₂O under UV light irradiation^{1, 2}. However, the production efficiency is too low to use Ag/Ga₂O₃ as an effective method of removing atmospheric CO₂. Although some works focusing on the effects of Ag co-catalysts on the photocatalytic activity have been reported^{2, 3}, we tried to improve Ga₂O₃ support itself to promote photocatalytic CO₂ reduction with water. In this study, we prepared Ga₂O₃ photocatalysts by calcining Ga(NO₃)₃ • 8H₂O at various temperatures and investigated effects of the Ga₂O₃ structure on the photocatalytic activity.

2. Experimental

 Ga_2O_3 samples were obtained by calcining $Ga(NO_3)_3 \cdot 8H_2O$ in the air at temperatures from 573 K to 973 K for 4 h. Photocatalytic activities of the prepared samples for CO_2 reduction with water were examined as follows: the sample (0.1 g) was dispersed in an aqueous solution of NaHCO₃ (0.1M) in the fixed-bed flow reactor cell under CO_2 gas with a flow rate at 3.0 mL/min and irradiated by UV-light (Xe lamp). The reaction products (CO, H₂ and O₂) were analyzed with gas chromatography. The samples were characterized with XRD, XAFS and BET surface area measurements and CO_2 adsorption experiment.

3. Results and discussion

XRD measurement (Fig. 1) showed that Ga₂O₃ samples prepared by calcination at higher temperatures than 823 K (823, 873, 923, 973-Ga₂O₃) were β -phase Ga₂O₃. 773-Ga₂O₃ was assigned to γ -phase Ga₂O₃ and 573, 673-Ga₂O₃ to ϵ -phase Ga₂O₃, respectively. The XRD pattern of 823-Ga₂O₃ consisted of very weak and broad peaks. Since the average particle size measured by TEM and BET surface area of 823-Ga₂O₃ were similar to those of 673, 773-Ga₂O₃, the broad XRD pattern of 823-Ga₂O₃ would be due to the low crystallinity of this sample.

The local structures of the prepared Ga_2O_3 samples were also investigated by the EXAFS measurement of Ga K-edge spectra.

The Fourier transform was performed on each EXAFS spectrum in the range from 3 Å⁻¹ to 12 Å⁻¹ and the

radial structure function (RSF) was obtained as shown in Fig. 2. In the RSFs, the first peak appeared at 1-2Å is assigned to the backscattering from adjacent oxygen atoms (Ga-O bond) and the second peak around 2.7Å shows the presence of the second-neighboring gallium atoms (Ga-(O)-Ga bond). The RSFs of -Ga₂O₃ and 973-Ga₂O₃ were coincident with that of a β-Ga₂O₃ reference sample. In the RSF of 823-Ga₂O₃, the first peak is larger than the second one which is similar to that of 773-Ga₂O₃ rather than those of 923-Ga₂O₃ and 973-Ga₂O₃. Considering XRD result, 823-Ga₂O₃ consists of β - and γ -Ga₂O₃ phases and γ -Ga₂O₃ phase dominates 823-Ga₂O₃. The RSF of 873-Ga₂O₃ would be corresponding to β -phase Ga₂O₃, however, the amplitudes of first and second peaks of 873-Ga₂O₃ are smaller than those of 923-Ga₂O₃ and 973-Ga₂O₃. The peak reductions are due to the mixture of Ga-O and Ga-(O)-Ga bonds with different atomic distances, suggesting that some γ -Ga₂O₃ phase is remained. Thus, EXAFS analysis clearly demonstrates the phase transition process where the β -Ga₂O₃ phase precipitates and grows in the γ -Ga₂O₃ phase.

The photocatalytic reduction of CO₂ with water proceeded over all the prepared Ga₂O₃ samples to produce CO, H₂ and O₂. As shown in Figs. 3 and 4, H₂ and CO production rates after 2 and 4 h CO₂ reduction tests over the Ga₂O₃ samples were plotted against their surface areas. H₂ production rate of the samples showed a tendency to increase with surface area of them. On the other hand, CO production rate didn't show any tendency and 823-Ga₃O₃ gave specific high CO production rate which was even higher than that for Ag loaded Ga₂O₃ (Ag/ β -Ga₂O₃) prepared as a reference photocatalyst. Note that 823-Ga₃O₃ which was consisted of the mixed phases of γ and β -Ga₂O₃ showed high activity for CO production. If the charge separation of electron-hole pairs and/or photo-absorption efficiency was enhanced for 823-Ga₂O₃, not only CO production but also H₂ production should be improved. Therefore, it was presumed that 823-

Figure 2. Radial structure functions for Ga K-edge EXAFS spectra of samples

Figure 4. Change of CO production rate with the surface area of the sample

 Ga_2O_3 enhanced the CO_2 adsorption process, and our CO_2 adsorption experiments actually confirmed that the amount of CO_2 chemisorption on high active photocatalyst (823-Ga₂O₃) was 6 times larger than low active photocatalyst (923-Ga₂O₃).

4. Conclusions

Ga₂O₃ samples were prepared by calcination of Ga(NO₃)₃ • 8H₂O powder at various temperatures from 573 K to 973 K. XRD and EXAFS measurements revealed that Ga₂O₃ samples prepared by calcination at temperatures higher than 923 K were β -phase Ga₂O₃ while those lower than 773 K were γ - or ϵ -phase Ga₂O₃. The samples prepared by calcination at 823 and 873 K (823-Ga₂O₃ and 873-Ga₂O₃) were assigned to γ , β -mixed phased Ga₂O₃. In particular, the 823-Ga₂O₃ showed low crystallinity and dominated by γ -Ga₂O₃ phase. The photocatalytic reduction of CO₂ with water proceeded over all the prepared Ga₂O₃ samples to produce CO, H₂ and O₂. H₂ production rate of the samples showed a tendency to increase with their surface area. On the other hand, the 823-Ga₂O₃ showed specific high activity for CO production by improving CO₂ adsorption on the sample, and the activity was even higher than that for Ag loaded Ga₂O₃ sample.

References

- 1. N. Yamamoto, T. Yoshida, S. Yagi, et al., e-J Surf. Sci. Nanotech., 12 (2014) 263-268.
- 2. M. Yamamoto, T. Yoshida, N. Yamamoto, Y. Yamamoto, S. Yagi and H. Yoshida, J. Mater. Chem. A, 2015, 3, 16810-16816
- 3. M. Yamamoto, S. Yagi, T. Yoshida, Catalysis Today, 2018, 4, 334-340