Lead Bismuth Oxyhalides $PbBiO_2X$ (X = Cl, Br) as Photocatalysts for Water Oxidation Under Visible Light

<u>Hajime, Suzuki,</u>^a Hironobu Kunioku,^b Masanobu Higashi,^b Osamu Tomita,^b Daichi Kato,^b Akinori Saeki,^a Hiroshi Kageyama^{b,c}, Ryu Abe^{b,c,*}

^a Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.

^b Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.

^c CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan

*Corresponding author: Fax: +81-75-383-2479, E-mail: ryu-abe@scl.kyoto-u.ac.jp

Abstract: We show that layered oxyhalides PbBiO₂X (X = Cl, Br, I) with a Sillén-type structure possess band levels appropriate for visible light-induced water splitting. Under visible light, PbBiO₂Cl and PbBiO₂Br with bandgap (BG) of 2.51 and 2.48 eV, respectively, stably oxidized water to O₂ in the presence of an Fe³⁺ electron acceptor. A comparison with structurally related SrBiO₂Cl and BaBiO₂Cl (BG = 3.55 and 3.54 eV) combined with DFT calculations revealed a significant interaction between O 2p and Pb 6s orbitals leading to the upward shift of the valence band maximum in PbBiO₂X as compared with (Sr,Ba)BiO₂Cl. **Keywords:** Z-scheme, Water splitting, Oxyhalide.

1. Introduction

We have recently demonstrated that Bi₄NbO₈Cl can oxidize water to O₂ efficiently and stably without observing any self-decomposition.¹ The stability against water oxidation is accounted for by the predominant occupation of O 2p orbitals in VBM, instead of Cl 3p orbitals. Madelung site potential analysis revealed that the upward shift of valence band maximum (VBM) in Bi₄NbO₈X (X = Cl, Br) originates from the electrostatic destabilization of the oxide anions in the fluorite layer.² Furthermore, we found a significant interaction between Bi 6s and O 2p orbitals derived from the revised lone pair (RLP) model,³ which also leads to the upward shift of VBM.⁴ Unfortunately, it is difficult to elaborate on the contribution of these two factors largely due to the complex crystal structure with coherent octahedral rotations that generate eight inequivalent oxygen sites. In this study, we investigated structurally simpler lead bismuth oxyhalides PbBiO₂X (X = Cl, Br, I), as potential materials for visible light induced water splitting. In addition to the simplicity of the crystal structure (vs. Bi₄NbO₈X), the presence of structurally related *AE*BiO₂Cl (*AE* = Sr, Ba) offers an opportunity to clarify the role of the stereoactive lone-pairs of Pb²⁺ 6s orbitals in the valence band structure.

2. Experimental

All the five compounds in powder form were prepared by a solid-state reaction. $PbBiO_2Cl$ and $PbBiO_2Br$ were prepared by calcining a stoichiometric mixture of PbO and BiOX (X = Cl and Br) at 973 K for 10 h in air. As for $PbBiO_2I$, a 1:1 mixture of PbO and BiOI was pelletized and heated in the same condition, but in an evacuated silica tube. $SrBiO_2Cl$ (BaBiO_2Cl) were prepared by the calcination of a stoichiometric mixture of BiOCl and $SrCO_3$ (BaCO₃) in air at 1073 K for 20 h.

3. Results and discussion

Figure 1 shows the band levels of PbBiO₂X (X = Cl, Br, I) and $AEBiO_2Cl$ (AE = Sr, Ba), which were determined by these diffuse reflectance spectra and Mott-Schottky plots. As for oxychlorides, the bandgaps of SrBiO₂Cl and BaBiO₂Cl were similar (~3.55 eV), but that of PbBiO₂Cl was red-shifted (up to 2.50 eV). For Pb, PbBiO₂Cl and PbBiO₂Br have similar bandgaps of ~2.5 eV, but PbBiO₂I has a red-shifted value of 2.35 eV. Clearly, the VBM of PbBiO₂Cl is much more negative compared to $AEBiO_2Cl$. DFT calculations

revealed that the significant interaction between O 2p and Pb 6s orbitals provided the elevated VBM (Figure 2). The conduction band minimums (CBMs) are also affected by the divalent cations; the substitution of the alkali earth metals by Pb induces a positive shift of the CBM. Consequently, PbBiO₂X have much smaller bandgaps than *AE*BiO₂Cl. The VBM level of PbBiO₂Br is similar to PbBiO₂Cl, implying that the DOS around the VBM in PbBiO₂Cl and PbBiO₂Br are predominantly formed by O 2p orbitals, not halide p orbitals. The VBM of PbBiO₂I is appreciably more negative than that of PbBiO₂Cl and PbBiO₂C

Both PbBiO₂Cl and PbBiO₂Br generated O₂ at steady rates in an aqueous Fe(NO₃)₃ solution under visible light irradiation, with a higher O₂ evolution rate observed in the chloride system. As for PbBiO₂I, no O₂ generation was observed, despite sufficient VBM/CBM levels. XPS analysis showed that PbBiO₂I are subject to self-oxidation by photo-generated holes, which is reasonably explained by the dominant occupation of I 5p orbitals around the VBM. The photo-generated holes will be localized on the I- anions after energy relaxation, thus preferentially oxidizing I⁻ in the PbBiO₂I instead of water. On the other hand, PbBiO₂Cl and PbBiO₂Br were more stable against photo-induced self-oxidation, probably as a result of the VBM of PbBiO₂Cl and PbBiO₂Br being predominantly formed by the O 2p orbitals.

Finally, visible-light-driven Z-scheme water splitting was accomplished by combining the RuO_2 -loaded PbBiO_2Cl photocatalyst with SrTiO_3 doped with rhodium as a H₂-evolving photocatalyst in the presence of the Fe³⁺/Fe²⁺ redox couple.

Figure 1. Proposed band edge positions of ABiO₂Cl (A = Sr and Ba) and PbBiO₂X (X = Cl, Br and I) at pH = 6.

Figure 2. DOS and the partial DOS (PDOS) of $AEBiO_2Cl$ (AE = Sr and Ba) and PbBiO_2X (X = Cl, Br, and I) for 6s and 6p orbitals of Bi and Pb.

4. Conclusions

 $PbBiO_2X$ (X = Cl, Br) were demonstrated to stably oxidize water to O_2 under visible light in the presence of an Fe³⁺ electron acceptor. A comparison with structurally related SrBiO₂Cl and BaBiO₂Cl and DFT calculations revealed that the significant interaction between O 2p and Pb 6s orbitals provided unusually elevated valence band maximum compared to conventional oxides, affording PbBiO₂X materials to have both the visible light absorption and the sufficient stability for water oxidation. Z-scheme water splitting was achieved under visible light using PbBiO₂X as an O₂-evolving photocatalyst.

References

- 1. H. Fujito, H. Kunioku, D. Kato, H. Suzuki, M. Higashi, H. Kageyama, R. Abe, J. Am. Chem. Soc. 138 (2016) 2082.
- D. Kato, K. Hongo, R. Maezono, M. Higashi, H. Kunioku, M. Yabuuchi, H. Suzuki, H. Okajima, C. Zhong, K. Nakano, R. Abe, H. Kageyama, J. Am. Chem. Soc. 139 (2017) 18725.
- 3. A. Walsh, D. J. Payne, R. G. Egdell, G. W. Watson, Chem. Soc. Rev. 40 (2011) 4455.
- 4. H. Kunioku, M. Higashi, O. Tomita, M. Yabuuchi, D. Kato, H. Fujito, H. Kageyama, R. Abe, J. Mater. Chem. A 6 (2018) 3100.