HNb₃O₈ nanosheet derived from amorphous niobic acid: Effect of layer stacking on the catalytic activity

Jongha Park,^a Young-Woong Suh^{a,b,*}

^aDepartment of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea ^bResearch Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea *Corresponding author: +82-2-2220-2294, ywsuh@hanyang.ac.kr

Abstract: HNb₃O₈ nanosheet was prepared by using amorphous niobic acid (NBA), where the solid-state and liquid synthesis methods were employed. NBA-derived nanosheets were evaluated to be much stable in the dehydration reaction compared to the analogues prepared by crystalline Nb₂O₅. In order to understand this difference, the samples obtained in each preparation step such as the mixing of K and Nb sources, calcination, proton exchange, and exfoliation/aggregation were analyzed by XRD, SEM, TEM-EDS, pyridine-IR, TG-MS, etc. The characterization results revealed that NBA-derived HNb₃O₈ nanosheet consisted of more stacked layers due to the presence of K⁺ ions remaining in the exfoliated sample. **Keywords:** Amorphous niobic acid, Potassium ions, Nanosheet durability

1. Introduction

Among various transition metal oxide nanosheets, much attention has been paid to HNb_3O_8 nanosheet in order to understand unique acid properties of niobic acid.^{1–2} However, the synthesis is a multistep process including solid-state mixing, thermal treatment, proton exchange and exfoliation/aggregation, which shows a low product yield. Thus, we developed a new "liquid synthesis" method involving the contact of crystalline Nb₂O₅ solid with aqueous K₂CO₃ solution.³ This method resulted in the high exfoliation efficiency and product yield, originating from the formation of homogeneous K₂CO₃–Nb₂O₅ mixture with more infiltrated K⁺ ions and, in turn, potassium niobate structure (KNb₃O₈) with more intercalated K⁺ ions. On the basis of our previous observation, we started to work on the use of different niobium source, that is, amorphous niobic acid (NBA) in the preparation of HNb₃O₈ nanosheet because the infiltration of K⁺ ions would be more favored in amorphous NBA structure compared to crystalline Nb₂O₅ structure. As far as we know, this strategy has been not reported in literature.

2. Experimental

For the conventional solid-state synthesis, K_2CO_3 was ground with Nb₂O₅ or niobic acid supplied by CBMM (HY-340) using a mortar and pestle (K:Nb molar ratio = 1/3), and then ball-milled for 3 days. The resulting mixture was subjected to calcination at 1373 K for 5 h, followed by ion exchange with HNO₃ solution for 72 h at room temperature. After through washing with distilled water, H⁺-exchanged niobate was added to tetrabutylammonium hydroxide solution for exfoliation and stirred under ambient condition. To this suspension, an aqueous HNO₃ solution was added for the recovery of exfoliated HNb₃O₈ as aggregates. The resulting white sample was collected by vacuum filtration, washed with distilled water and finally dried. This dry sample is referred to as NS Nb₂O₅ (S) or NS NBA (S), where (S) represents the solid-state synthesis. For the liquid synthesis, each niobium source was added into an aqueous K₂CO₃ solution, followed by vigorous stirring and drying at 373 K overnight. The subsequent steps were conducted identically as mentioned above, yielding NS Nb₂O₅ (L) and NS NBA (L) in which (L) represents the liquid synthesis.

The activities of the prepared samples were tested in the 2-heptanol dehydration using a high pressure batch reactor. Prior to the activity test, the sample was thermally treated at 723 K in N_2 atmosphere. After the reaction at 513 K for 6 h under N_2 , the reaction mixture was taken out, filtered through a syringe filter and mixed with a GC standard of acetone. An aliquot of this solution was analyzed in a gas chromatograph.³

3. Results and discussion

In three consecutive runs for the dehydration of 2-heptanol (Fig. 1a), NS NBA (S) held the conversion

of ca. 7.8% and NS NBA (L) showed a slight decrease in the conversion from 24.7% to 22.6%, which is different from parent NBA. However, a large activity decline was observed in both NS Nb₂O₅ (S) and (L). These results indicate that the durability of HNb_3O_8 nanosheet is influenced by the niobium source employed.

Figure 1. (a) Durability test in the dehydration of 2-heptanol and (b) XRD patterns of exfoliated HNb₃O₈ nanosheet samples.

In order to understand such a difference in catalytic performance, activity tests were conducted over NS NBA (L) with less K^+ ions (prepared by HCl treatment). The resulting samples exhibited an activity decline in repeated runs, which implies that the catalyst durability is linked to residual K^+ ions in HNb₃O₈ nanosheet. Thus, we searched for a fingerprint for the presence of K^+ ions in the nanosheet materials. As a result, small reflections of $K_8Nb_{18}O_{49}$ crystallite were detected in the XRD patterns of NS NBA (S) and (L), but not in those of NS Nb₂O₅ (S) and (L). TEM-EDS analysis additionally revealed a little presence of K^+ in NS NBA (S) and (L), where the K/Nb atomic ratio was around 0.003. Therefore, it is believed that these potassium ions, even if small, would be displaced in between the layers of HNb₃O₈ nanosheet derived from amorphous NBA and that NS NBA (S) and (L) with more stacking are relatively durable in the reaction compared to NS Nb₂O₅ (S) and (L), respectively.

Then, we tried to figure out a possible reason for the above results. The strong evidence was found in layered KNb_3O_8 ; the K/Nb atomic ratio was approximately 1.5 times higher in NBA-derived materials than in Nb₂O₅-derived ones. This means that more intercalation of K⁺ ions is achieved by using amorphous niobic acid as Nb source for KNb₃O₈, which is explained by more facile diffusion of K⁺ in the amorphous structure compared to the crystalline one.

4. Conclusions

Our work demonstrated that the property, activity and stability of HNb_3O_8 nanosheet are associated with how well K⁺ ions are infiltrated in the step for the mixing of K and Nb sources. Compared to crystalline Nb₂O₅, niobic acid is structurally amorphous so that K⁺ ions can penetrate well into more inside of the particles. Due to this effect, complete proton exchange would be difficult in NBA-derived HNb₃O₈ layers, thus a small amount of K⁺ ions being present in the final nanosheet. These residual K⁺ ions made HNb₃O₈ to consist of more layer stacking, consequently showing better catalyst durability in the dehydration reaction. This report would pave the way toward the preparation of catalytically active and stable HNb₃O₈ nanosheet.

References

- 1. A. Takagaki, D. Lu, J.N. Kondo, M. Hara, S. Hayashi, K. Domen, Chem. Mater. 17 (2005) 2487.
- 2. A.S. Dias, S. Lima, D. Carriazo, V. Rives, M. Pillinger, A.A. Valente, J. Catal. 244 (2006) 203.
- 3. J. Park, J.-H. Lee, Y.-M. Chung, Y.-W. Suh, Adv. Powder Technol. 28 (2017) 2524.