Direct conversion of propane to propylene by O₂ in the presence of HCl over NiO-modified CeO₂ nanocrystals

<u>Qinghong Zhang</u>,* Quanhua Xie, Huaming Zhang, Jincan Kang, Jun Cheng and Ye Wang

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China *Corresponding author: +86-592-2183047, zhangqh@xmu.edu.cn

Abstract: Here, we report a new strategy for the oxidative dehydrogenation of propane by O_2 with outstanding propylene yield in the presence of HCl. CeO₂ is an efficient catalyst for the conversion of C_3H_8 to C_3H_6 by ($O_2 + HCl$). This reaction is structure sensitive and the catalytic behavior depends on the exposed facet of CeO₂. A C_3H_6 yield of 55% has been attained at C_3H_6 selectivity of ~80% over NiO-modified CeO₂ nanorods. C_3H_8 is activated by the chlorine species generated from HCl oxidation on oxygen vacancy sites. NiO enhances the adsorption and activation of HCl, thus increasing C_3H_6 selectivity.

Keywords: Oxidative dehydrogenation of propane, Propylene, CeO₂ nanocrystals.

1. Introduction

Oxidative dehydrogenation of C_3H_8 is an attractive reaction for C_3H_6 production, but the over-oxidation results in low C_3H_6 selectivity at considerable C_3H_8 conversions and the formation of undesirable CO_2 . To increase the selectivity of the target product, which is more reactive than the substrate, is a challenging goal in selective oxidation catalysis.¹ Despite some recent encouraging progress, high propylene selectivity (>70%) is still difficult to achieve at a high propane conversion (>30%).

The use of halogen (X₂) as an oxidant for the functionalization of lower alkanes can avoid the formation of CO₂ and has attracted much attention in recent years, but the regeneration of X₂ from HX via the Deacon reaction is necessary and is a cost-demanding process. Some studies have been devoted to the conversion of CH₄ and other lower alkanes by (O₂ + HX), but only a few studies have reported the conversion of propane by this strategy.^{2,3} Besides lower olefins, RX (R = alkyl group) was also formed in the conversion of lower alkanes.³ Here, we report the direct conversion of C₃H₈ to C₃H₆ by (O₂ + HCl) with a high single-pass yield using CeO₂-based catalyst. We demonstrate that the reaction is structure sensitive and the modification of CeO₂ by NiO can further enhance C₃H₆ yield. The roles of HCl and the reaction mechanism will be discussed.

2. Experimental

 CeO_2 nanocrystals with different morphologies were synthesized by hydrothermal methods. The modification of CeO_2 nanorods with different additives was performed by an impregnation method. The catalytic reaction was carried out on a fixed-bed flow reactor. The carbon-containing products were analyzed by online gas chromatography.

3. Results and discussion

We first investigated the catalytic behaviors of various metal-oxide catalysts for the conversion of C_3H_8 by ($O_2 + HCl$). The result shows that CeO_2 is a promising catalyst, not only because CeO_2 demonstrates the highest single-pass C_3H_6 yield among all the catalysts examined but also because it shows high stability. The catalytic behavior of CeO_2 depended on its morphology or the exposed facets. The rates of C_3H_8 conversion and C_3H_6 formation decreased in the order of nanorods (exposing {110} + {100}) > nanocubes (exposing {100}) > nano-octahedra (exposing {111}) \approx nanoparticle (exposing {111}). Thus, the {110} facet shows higher activity than the {100} facet, which was significantly higher than the {111} facet. We further compared the C_3H_6 selectivity at similar C_3H_8 conversion levels and found that the C_3H_6 selectivity decreased in the following sequence: nanocube > nanorod > nanooctahedron \approx nanoparticle. Thus, the {100} facet is the most selective for C_3H_6 formation, followed by the {110} and {111} facets. In short, the CeO₂catalyzed conversion of C_3H_8 is a structure-sensitive reaction. The {110} facet is the most active for C_3H_8 conversion, whereas the {100} facet is the most selective for C_3H_6 formation.

We investigated the effect of various modifiers on the catalytic behavior of CeO₂ nanorods. Among all the

modifiers examined, NiO was the most efficient for promoting C_3H_6 formation. Both O_2 and C_3H_8 conversions increased after the doping of NiO with a low content (Figure 1). The C_3H_6 selectivity increased gradually from 55% to 72% with an increase in NiO content to 8 wt%. At the same time, the selectivities of CO and CO₂ decreased, and the selectivity of organic chlorides kept low (<4%).

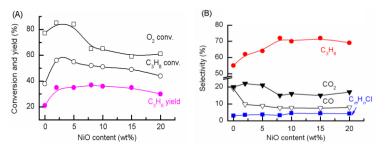


Figure 1. Effect of NiO content on catalytic behaviors of NiO-CeO2 catalysts.

Our studies revealed that HCl played a crucial role in the selective formation of C₃H₆ over CeO₂ based

catalysts. CO₂ was the major product in the absence of HCl (Figure 2A), indicating that CeO₂ and NiO–CeO₂ were complete oxidation catalysts for the oxidation of C₃H₈ by O₂. Both C₃H₈ conversion and C₃H₆ selectivity increased with the partial pressure of HCl. C₃H₈ conversion of ~70% and C₃H₆ selectivity of ~80% were attained over the 8 wt% NiO–CeO₂ catalyst at a *P*(HCl) of 25 kPa (Figure 2B). The single-pass C₃H₆ yield reached ~55%. We confirmed that ~98% HCl could be recovered.

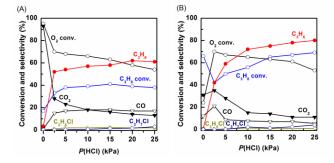


Figure 2. Effect of HCl pressure on catalytic behaviors over (A) CeO_2 and (B) 8 wt% NiO–CeO₂ catalysts.

We performed mechanistic studies for CeO₂ and 8 wt% NiO–CeO₂ catalysts. We uncovered that the oxidation of HCl by O₂ to Cl₂ (the Deacon reaction) occurred on our catalysts, but the formation of Cl₂ was inhibited by the presence of C_3H_8 . We characterized the CeO₂ nanocrystals with different morphologies and the NiO–CeO₂ catalysts with different NiO contents by UV-Raman and HCl chemisorption studies. The correlation of the characterization results with the catalytic behaviors suggests that C_3H_8 conversion activity depends on the concentration of oxygen vacancies, while the chemisorption amount of HCl determines C_3H_6 selectivity. In combination with DFT calculations, we propose that HCl is activated on oxygen vacancies in the presence of O_2 , generating Cl species for the activation of C_3H_8 and the selective formation of C_3H_6 .

4. Conclusions

CeO₂ is an efficient and stable catalyst for the conversion of C_3H_8 to C_3H_6 by O_2 in the presence of HCl. The reaction is structure sensitive and the catalytic behavior depends on the exposed facet of CeO₂. CeO₂ nanorods and nanocubes show the highest activity and the highest C_3H_6 selectivity, respectively. The modification of CeO₂ nanorods with NiO increases catalytic performances, offering a C_3H_6 yield of ~55%. HCl plays a crucial role in selective formation of C_3H_6 . The oxygen vacancy participates in the activation of HCl, generating active Cl species for the selective formation of C_3H_6 .

References

- 1. F. Cavani, N. Ballarini, A. Cericola, Catal. Today 127 (2007) 113.
- 2. J. He, T. Xu, Z. Wang, Q. Zhang, W. Deng, Y. Wang, Angew. Chem. Int. Ed. 51 (2012) 2438.
- 3. V. Paunović, G. Zichittella, M. Moser, A. P. Amrute, J. Pérez-Ramírez, Nat. Chem. 8 (2016) 803.